Ancient Solutions and Singularity Analysis in Geometric Flows

几何流中的古代解和奇异性分析

基本信息

  • 批准号:
    1811833
  • 负责人:
  • 金额:
    $ 18.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The field of differential geometry is the study of curved objects, and this project focuses on the use of geometric evolution equations or `flows' to understand these objects. More specifically, these equations govern mathematically-defined processes that smoothly modify objects in a way that is driven by geometrically meaningful quantities such as length, area, volume or curvature. The equations that the PI studies have very nice regularity properties, in the sense that bumpy objects often become smoother as they evolve; in fact, it is reasonable to expect that the object will gain more symmetries as the flow proceeds, and this will help us better understand the class of geometric objects we started with. Unfortunately, these equations also have the potential to develop singularities in finite time, meaning that the solution may acquire sharp points and corners, and one cannot expect in general to have a smooth solution to the equation for a long time. In order for us to achieve our ultimate goal, and better understand the underlying geometric object using the flow techniques, we need to understand how to deal with singularities that may arise. These and similar topics have been the subject of several workshops in geometric analysis at Rutgers University organized by the PI (together with colleagues), attracting many graduate students and featuring both research talks and advanced graduate-course level lectures.One of the aims of this project is the classification of ancient solutions to nonlinear geometric flows, such as, the Ricci flow and the mean curvature flow. The PI proposes to combine the PDE techniques and geometric estimates to study the ancient solutions of such flows. Their classification is crucial for better understanding the singularities that occur in finite time. Ancient solutions to the two-dimensional Ricci flow describe trajectories of the renormalization group equations of certain asymptotically free local quantum field theories in the ultraviolet regime. The PI will classify ancient closed non-collapsed solutions to the three-dimensional Ricci flow, which would settle down a conjecture stated by Perelman in one of his papers. The PI shall also find minimal conditions that guarantee smooth existence of a solution to the Ricci flow and the mean curvature flow. The PI also wants to understand singularity formation in the following sense: what the stable singularity models in four dimensional Ricci flow are. This is related to understanding the singularity formation of a four-dimensional Ricci flow starting at generic initial data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微分几何领域是对弯曲物体的研究,该项目的重点是使用几何演化方程或“流”来理解这些物体。 更具体地说,这些方程控制着数学定义的过程,这些过程以由几何上有意义的量(例如长度、面积、体积或曲率)驱动的方式平滑地修改对象。 PI 研究的方程具有非常好的规律性,从某种意义上说,凹凸不平的物体通常会随着演化而变得更加平滑;事实上,随着流动的进行,物体将获得更多的对称性是合理的,这将帮助我们更好地理解我们开始的几何物体的类别。 不幸的是,这些方程也有可能在有限时间内产生奇点,这意味着解可能会出现尖锐的点和角,并且通常不能指望在很长一段时间内得到方程的平滑解。为了让我们实现最终目标,并使用流技术更好地理解底层几何对象,我们需要了解如何处理可能出现的奇点。这些和类似的主题一直是由 PI(与同事)在罗格斯大学组织的几场几何分析研讨会的主题,吸引了许多研究生,并以研究讲座和高级研究生课程水平讲座为特色。本次研讨会的目的之一该项目是对非线性几何流的古代解的分类,例如里奇流和平均曲率流。 PI 建议结合偏微分方程技术和几何估计来研究此类流的古老解决方案。它们的分类对于更好地理解有限时间内发生的奇点至关重要。二维里奇流的古代解描述了紫外区域中某些渐近自由局域量子场论的重正化群方程的轨迹。 PI 将对三维 Ricci 流的古代封闭非塌缩解进行分类,这将解决佩雷尔曼在他的一篇论文中提出的猜想。 PI 还应找到保证 Ricci 流和平均曲率流解顺利存在的最小条件。 PI 还希望从以下意义上理解奇点的形成:四维 Ricci 流中的稳定奇点模型是什么。这与从通用初始数据开始理解四维里奇流的奇点形成有关。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natasa Sesum其他文献

Asymptotic behavior of Type III mean curvature flow on noncompact hypersurfaces
非紧超曲面上III型平均曲率流的渐近行为
Evolution of locally convex closed curves in the area-preserving and length-preserving curvature flows.
面积保持和长度保持曲率流中局部凸闭合曲线的演化。

Natasa Sesum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natasa Sesum', 18)}}的其他基金

Conference: CRM Thematic Program in Geometric Analysis
会议:几何分析中的 CRM 主题课程
  • 批准号:
    2401549
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Conference: Geometric flows and applications
会议:几何流及应用
  • 批准号:
    2316597
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Ancient Solutions and Singularities in Geometric Flows
几何流中的古代解和奇点
  • 批准号:
    2105508
  • 财政年份:
    2021
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
CAREER:Singularities and singularity models in curvature flows
职业:曲率流中的奇点和奇点模型
  • 批准号:
    1056387
  • 财政年份:
    2011
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Different curvature flows and their long time behaviour
不同曲率流及其长期行为
  • 批准号:
    1110145
  • 财政年份:
    2010
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Different curvature flows and their long time behaviour
不同曲率流及其长期行为
  • 批准号:
    0905749
  • 财政年份:
    2009
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Limiting Behavior of the Ricci Flow
里奇流的限制行为
  • 批准号:
    1037227
  • 财政年份:
    2009
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Limiting Behavior of the Ricci Flow
里奇流的限制行为
  • 批准号:
    0604657
  • 财政年份:
    2006
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant

相似国自然基金

从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
  • 批准号:
    32371621
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于超声单模态影像融合实时规划技术实现肝脏肿瘤热消融最优穿刺路径解决方案
  • 批准号:
    82371986
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
数智驱动下高科技企业场景式解决方案研究:理论模型、构建机制及市场响应性
  • 批准号:
    72272082
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
晶界偏聚对CdTe太阳电池梯度吸收层体系的影响机制及解决方案
  • 批准号:
    62174070
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
约束作用下金属锂全电池负极退化机理原位监测及解决方案
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanism of singularity preservation for solutions in parabolic equations
抛物型方程解的奇异性保持机制
  • 批准号:
    19K14567
  • 财政年份:
    2019
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Singularity of solutions and stationary problems for nonlinear parabolic equations
非线性抛物型方程解的奇异性和平稳问题
  • 批准号:
    17K05333
  • 财政年份:
    2017
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On regularity and singularity of solutions of some nonlinear elliptic equations
一些非线性椭圆方程解的正则性和奇异性
  • 批准号:
    1362525
  • 财政年份:
    2014
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Elucidation of fracture phenomena from the viewpoint of singularity of solutions of partial differential equations at crack tips
从裂纹尖端偏微分方程解奇异性的角度解释断裂现象
  • 批准号:
    23740101
  • 财政年份:
    2011
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了