Large Scale Geometry of Scalar Curvature and Minimal Surfaces

标量曲率和最小曲面的大尺度几何

基本信息

  • 批准号:
    1811059
  • 负责人:
  • 金额:
    $ 17.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

Geometers seek to describe how an object bends and study objects that curve in a specific way. This study of curvature is important in all domains of science and engineering. For example, the theory of general relativity posits that gravity curves space and time in a mathematically precise manner, while in materials science, the meeting points between crystal structures are modeled by (a rather different notion of) curvature. This project is concerned with the study of a particular measure of bending called scalar curvature. Scalar curvature is one of the simplest measures of bending, but due to this simplicity scalar curvature can contain only a limited amount of information. Hence, we must study scalar curvature through highly indirect means. One way to explore scalar curvature is in relation to the isoperimetric problem: in a given space, how can we enclose the largest amount of volume with the smallest perimeter? This is one of the oldest mathematical questions, but its link to scalar curvature is only recently beginning to be understood. The PI's project will continue the study of scalar curvature as it affects the large-scale behavior of area and volume, with particular emphasis on the relationship between such topics and problems related to general relativity. In addition to this research, this project will also support the PI's continued efforts to promote student learning and training through seminar organization, conferences, and summer schools, as well as expository articles and notes. A major component of the research plan is the continued study of the link between large-scale variational problems and scalar curvature, motivated by geometric and physical considerations such as the Penrose inequality and static uniqueness questions from general relativity. To this end, the PI plans to continue his investigation of global uniqueness questions related to scalar curvature and the isoperimetric problem. Recently, several such problems have been understood in three dimensions, using a combination of powerful tools from geometric analysis (many of which are limited to three dimensions). One portion of the research will consist of investigating higher dimensional analogues of these results, which will necessitate the development of a wide array of new techniques. The ideas developed in these aforementioned global uniqueness works have also led to other (a priori unrelated) topics that the PI will investigate. For example, determining the validity of the Minkowski inequality for non-convex surfaces (possibly with an additional bending term) is related to the uniqueness question for large stable constant mean curvature surfaces in asymptotically flat manifolds. Similarly, an invariant related to the least area in the homology class of a torus for certain Riemannian three-manifolds with non-negative scalar curvature is related to the rigidity of area-minimizing cylinders in three-manifolds of non-negative scalar curvature. In a different (but related) direction, this project will also include investigation of the relationship between the geometry and topology of minimal surfaces, including the study of surfaces with simple topology or small index.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何学家试图描述物体如何弯曲并研究以特定方式弯曲的物体。曲率的研究在科学和工程的所有领域都很重要。例如,广义相对论假设重力以数学上精确的方式弯曲空间和时间,而在材料科学中,晶体结构之间的交汇点是通过(一个相当不同的概念)曲率来建模的。该项目涉及一种称为标量曲率的特殊弯曲测量方法的研究。标量曲率是最简单的弯曲测量之一,但由于这种简单性,标量曲率只能包含有限的信息。因此,我们必须通过高度间接的手段来研究标量曲率。探索标量曲率的一种方法与等周问题有关:在给定的空间中,我们如何用最小的周长包围最大的体积?这是最古老的数学问题之一,但它与标量曲率的联系直到最近才开始被理解。 PI 的项目将继续研究标量曲率,因为它会影响面积和体积的大尺度行为,特别强调这些主题与广义相对论相关问题之间的关系。除了这项研究之外,该项目还将支持 PI 继续努力通过研讨会组织、会议、暑期学校以及说明性文章和笔记来促进学生的学习和培训。 该研究计划的一个主要组成部分是继续研究大规模变分问题和标量曲率之间的联系,其动机是几何和物理考虑,例如彭罗斯不等式和广义相对论的静态唯一性问题。为此,PI 计划继续研究与标量曲率和等周问题相关的全局唯一性问题。最近,通过使用几何分析中强大的工具(其中许多仅限于三个维度)的组合,已经在三个维度上理解了几个此类问题。研究的一部分将包括研究这些结果的更高维度的类似物,这将需要开发一系列新技术。上述全球独特性工作中提出的想法也引发了 PI 将研究的其他(先验无关)主题。例如,确定非凸曲面(可能带有附加弯曲项)的闵可夫斯基不等式的有效性与渐近平坦流形中大稳定常平均曲率曲面的唯一性问题相关。类似地,对于某些具有非负标量曲率的黎曼三流形,与环面同调类中的最小面积相关的不变量与非负标量曲率的三流形中面积最小化圆柱体的刚度相关。在不同(但相关)的方向上,该项目还将包括对最小曲面的几何和拓扑之间关系的研究,包括对具有简单拓扑或小指数的曲面的研究。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Curvature estimates and sheeting theorems for weakly stable CMC hypersurfaces
弱稳定 CMC 超曲面的曲率估计和片状定理
  • DOI:
    10.1016/j.aim.2019.05.023
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Bellettini, Costante;Chodosh, Otis;Wickramasekera, Neshan
  • 通讯作者:
    Wickramasekera, Neshan
Asymptotically flat three-manifolds contain minimal planes
渐近平坦三流形包含最小平面
  • DOI:
    10.1016/j.aim.2018.08.010
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chodosh, Otis;Ketover, Daniel
  • 通讯作者:
    Ketover, Daniel
Minimal surfaces and the Allen–Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates
最小曲面和 3 流形上的 Allen–Cahn 方程:指数、多重性和曲率估计
  • DOI:
    10.4007/annals.2020.191.1.4
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Chodosh, Otis;Mantoulidis, Christos
  • 通讯作者:
    Mantoulidis, Christos
On far-outlying constant mean curvature spheres in asymptotically flat Riemannian 3-manifolds
渐进平坦黎曼3流形中的远外常平均曲率球
Minimal Hypersurfaces with Arbitrarily Large Area
具有任意大面积的最小超曲面
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Otis Chodosh其他文献

Minimal hypersurfaces with bounded index
具有有界索引的最小超曲面
  • DOI:
    10.1007/s00222-017-0717-5
  • 发表时间:
    2015-09-22
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Otis Chodosh;Daniel Ketover;Davi Máximo
  • 通讯作者:
    Davi Máximo
Effective versions of the positive mass theorem
正质量定理的有效版本
  • DOI:
    10.1007/s00222-016-0667-3
  • 发表时间:
    2015-03-19
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    A. Carlotto;Otis Chodosh;M. Eichmair
  • 通讯作者:
    M. Eichmair
Stationary axisymmetric black holes with matter
具有物质的静止轴对称黑洞
Time-Periodic Einstein–Klein–Gordon Bifurcations of Kerr
克尔的时间周期爱因斯坦-克莱因-戈登分岔
  • DOI:
    10.1007/s00220-017-2998-3
  • 发表时间:
    2015-10-27
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Otis Chodosh;Yakov Shlapentokh
  • 通讯作者:
    Yakov Shlapentokh
STABLE MINIMAL SURFACES AND POSITIVE SCALAR CURVATURE LECTURE NOTES FOR MATH 258, STANFORD, FALL 2021
稳定最小曲面和正标量曲率数学 258 讲座笔记,斯坦福大学,2021 年秋季
  • DOI:
    10.1016/j.geomphys.2010.05.010
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Otis Chodosh
  • 通讯作者:
    Otis Chodosh

Otis Chodosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Otis Chodosh', 18)}}的其他基金

Stability in Geometric Variational Problems
几何变分问题的稳定性
  • 批准号:
    2304432
  • 财政年份:
    2023
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
Large Scale Geometry of Scalar Curvature and Minimal Surfaces
标量曲率和最小曲面的大尺度几何
  • 批准号:
    2016403
  • 财政年份:
    2019
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
Large Scale Geometry of Scalar Curvature and Minimal Surfaces
标量曲率和最小曲面的大尺度几何
  • 批准号:
    2016403
  • 财政年份:
    2019
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant

相似国自然基金

超大规模MIMO系统信道状态信息获取与无线传输理论研究
  • 批准号:
    62371180
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
考虑运营扰动的大规模地铁网络个体乘客实时出行过程预测
  • 批准号:
    52372332
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型电力系统中可再生能源大规模利用的建模及激励机制研究
  • 批准号:
    72304114
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
  • 批准号:
    12371306
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
  • 批准号:
    2348748
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
  • 批准号:
    10667903
  • 财政年份:
    2023
  • 资助金额:
    $ 17.28万
  • 项目类别:
BRAIN CONNECTS: A Center for High-throughput Integrative Mouse Connectomics
大脑连接:高通量集成鼠标连接组学中心
  • 批准号:
    10665380
  • 财政年份:
    2023
  • 资助金额:
    $ 17.28万
  • 项目类别:
Continuous longitudinal atlas construction for the study of brain development
用于大脑发育研究的连续纵向图谱构建
  • 批准号:
    10683307
  • 财政年份:
    2022
  • 资助金额:
    $ 17.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了