A Hybrid Photonics Device for Efficient Quantum Entanglement
用于高效量子纠缠的混合光子器件
基本信息
- 批准号:1807566
- 负责人:
- 金额:$ 36.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical AbstractQuantum computers, which utilize quantum mechanics, will be able to solve problems that are not tractable on today's types of computers. An example relevant to national security is the factorization of large numbers into component prime numbers. This computationally hard task underlies modern encryption protocols used for secure communication. An example relevant to materials discovery is quantum simulation. Because interactions between atoms within a material are quantum mechanical, an efficient materials simulator must also have quantum mechanical features. A critical resource for quantum computers is quantum entanglement. In this project, we will design, implement, and test integrated quantum circuits in diamond with the aim to significantly increase quantum entanglement generation rates. Specifically, we aim to increase this rate by integrating three specialized layers: a quantum layer based on light-emitting defects in diamond, a photonic layer which routes photons on the surface of the diamond chip, and a detector layer which detects the single photons. These on-chip integrated photonic circuits would then be the processor chip for a future quantum computer or a node of a quantum network. Faster entanglement rates will impact our ability to scale up the number of quantum bits used for calculations. As an integrable part of this research, graduate students and undergraduate students will be trained in nanofabrication, integrated photonics, and quantum technologies, skill areas currently in high demand in industry and government labs.Technical AbstractQuantum entanglement, a fundamental resource for quantum information processing, can theoretically be efficiently heralded via photon measurement. Heralded schemes have some striking characteristics. First, qubits do not need to be moved. Second, qubits do not need to interact with each other. This latter condition limits the number of decoherence channels that may be present, boosting the prospects for scalability. Finally, photon-mediated heralded entanglement is uniquely suited to (and perhaps can only be realized by) on-chip integrated photonics. This proposal seeks to realize an on-chip integrated photonics entanglement generator. The integrated photonics entanglement generator is based on a layered device of different materials for integrated functionality: (1) quantum defects in diamond, (2) a gallium phosphide photonics layer, and (3) waveguide-integrated NbN superconducting single detectors. The main goal of integration is to increase the entanglement generation rate to enable scaling to large (2) qubit networks. Estimates that neglect the photon purity in the integrated device indicate kHz rates are possible, five orders of magnitude greater than free space implementations. However, we emphasize that at the current state of integrated quantum photonics, it will be a major achievement to simply outperform free space implementations in a scalable platform. Device and system-level evaluation will be performed to give a roadmap toward efficient systems. The demonstration of efficient generation of measurement-based entanglement is expected to propel integrated photonics into viability as a universal quantum computation platform.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要利用量子力学的量子计算机将能够解决当今类型计算机无法处理的问题。与国家安全相关的一个例子是将大数分解为素数。这项计算难度大的任务是用于安全通信的现代加密协议的基础。与材料发现相关的一个例子是量子模拟。 由于材料内原子之间的相互作用是量子力学的,因此有效的材料模拟器还必须具有量子力学特征。量子计算机的一个关键资源是量子纠缠。在这个项目中,我们将设计、实现和测试金刚石中的集成量子电路,旨在显着提高量子纠缠的发生率。具体来说,我们的目标是通过集成三个专用层来提高这一速率:基于金刚石发光缺陷的量子层、在金刚石芯片表面引导光子的光子层以及检测单个光子的检测器层。 这些片上集成光子电路将成为未来量子计算机或量子网络节点的处理器芯片。更快的纠缠率将影响我们扩大用于计算的量子比特数量的能力。作为这项研究的一个组成部分,研究生和本科生将接受纳米制造、集成光子学和量子技术方面的培训,这些技能领域目前在工业界和政府实验室中需求量很大。 技术摘要量子纠缠是量子信息处理的基本资源,理论上可以通过光子测量有效地预示。所倡导的计划有一些显着的特征。首先,量子位不需要移动。其次,量子位不需要彼此相互作用。后一种情况限制了可能存在的退相干通道的数量,从而提高了可扩展性的前景。最后,光子介导的纠缠特别适合(并且可能只能通过)片上集成光子学来实现。该提案旨在实现片上集成光子纠缠发生器。集成光子纠缠发生器基于不同材料的分层器件,用于集成功能:(1) 金刚石中的量子缺陷,(2) 磷化镓光子层,以及 (3) 波导集成 NbN 超导单探测器。集成的主要目标是提高纠缠生成率,以实现扩展到大型 (2) 量子位网络。忽略集成器件中光子纯度的估计表明,kHz 速率是可能的,比自由空间实现高五个数量级。然而,我们强调,在集成量子光子学的当前状态下,在可扩展平台中超越自由空间实现将是一项重大成就。将进行设备和系统级评估,以给出高效系统的路线图。高效生成基于测量的纠缠的演示预计将推动集成光子学成为通用量子计算平台的可行性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inverse-designed photon extractors for optically addressable defect qubits
用于光学可寻址缺陷量子位的逆向设计光子提取器
- DOI:10.1364/optica.408611
- 发表时间:2020-12
- 期刊:
- 影响因子:10.4
- 作者:Chakravarthi, Srivatsa;Chao, Pengning;Pederson, Christian;Molesky, Sean;Ivanov, Andrew;Hestroffer, Karine;Hatami, Fariba;Rodriguez, Alejandro W.;Fu, Kai
- 通讯作者:Fu, Kai
Window into NV center kinetics via repeated annealing and spatial tracking of thousands of individual NV centers
通过对数千个单独的 NV 中心进行重复退火和空间跟踪,了解 NV 中心动力学
- DOI:10.1103/physrevmaterials.4.023402
- 发表时间:2019-07-17
- 期刊:
- 影响因子:3.4
- 作者:Srivatsa Chakravarthi;C. Moore;April Opsvig;Christian Pederson;Emma J. Hunt;A. Ivanov;Ian Christen;S. Dunham;K. Fu
- 通讯作者:K. Fu
Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond
表面和激光诱导噪声对金刚石中注入氮空位中心光谱稳定性的影响
- DOI:10.1103/physrevb.104.085425
- 发表时间:2021-08
- 期刊:
- 影响因子:3.7
- 作者:Chakravarthi, Srivatsa;Pederson, Christian;Kazi, Zeeshawn;Ivanov, Andrew;Fu, Kai
- 通讯作者:Fu, Kai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kai-Mei Fu其他文献
Kai-Mei Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kai-Mei Fu', 18)}}的其他基金
Conference: 2024 Defects in Semiconductors GRC/GRS
会议:2024 年半导体缺陷 GRC/GRS
- 批准号:
2414677 - 财政年份:2024
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
EAGER: PHY-GRS: A Diamond Quantum Control Testbed
EAGER:PHY-GRS:钻石量子控制测试台
- 批准号:
2233120 - 财政年份:2022
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Semiconductor electron-nuclear spin qubits with optical access
具有光学访问功能的半导体电子-核自旋量子位
- 批准号:
2212017 - 财政年份:2022
- 资助金额:
$ 36.55万 - 项目类别:
Continuing Grant
GRC Defects in Semiconductors: Defect Formation, Characterization, Control and Utilization
半导体中的 GRC 缺陷:缺陷形成、表征、控制和利用
- 批准号:
2023837 - 财政年份:2020
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
NRT-QL: Accelerating Quantum-Enabled Technologies
NRT-QL:加速量子技术
- 批准号:
2021540 - 财政年份:2020
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
QLCI-CG: Institute for Hybrid Quantum Systems
QLCI-CG:混合量子系统研究所
- 批准号:
1936932 - 财政年份:2019
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Donor Electron Spins in Direct Bandgap Semiconductors for Quantum Networks
用于量子网络的直接带隙半导体中的供体电子自旋
- 批准号:
1820614 - 财政年份:2018
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Student Travel Support for the 11th Workshop on the Principles and Applications of Control in Quantum Systems, July 11-17, 2017 in Seattle, WA.
为 2017 年 7 月 11 日至 17 日在华盛顿州西雅图举行的第 11 届量子系统控制原理与应用研讨会提供学生旅行支持。
- 批准号:
1743298 - 财政年份:2017
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Student Travel Support for the 11th Workshop on the Principles and Applications of Control in Quantum Systems, July 11-17, 2017 in Seattle, WA.
为 2017 年 7 月 11 日至 17 日在华盛顿州西雅图举行的第 11 届量子系统控制原理与应用研讨会提供学生旅行支持。
- 批准号:
1743298 - 财政年份:2017
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Instrument Development: A nanoscale, unbleachable orientation and position sensor for biophysical imaging
仪器开发:用于生物物理成像的纳米级、不可漂白的方向和位置传感器
- 批准号:
1607869 - 财政年份:2016
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
相似国自然基金
基于新型光子晶体细胞力学显微镜的乳腺癌转移力学生物学研究
- 批准号:12202212
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
叠层二维狄拉克电子体系中的等离激元光子学
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
有机杂化超高品质因子微腔非线性光子学研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
自组装DNA折纸模板指导贵金属图案化生长调控及其纳米光子学性质研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
平带转角二维材料超快光子学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics
合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)
- 批准号:
2322892 - 财政年份:2023
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Extraordinary Dispersion Engineering In Enabling Ultrafast Swept Source visiblelight Optical Coherence Tomography
非凡的色散工程实现超快扫频源可见光光学相干断层扫描
- 批准号:
10698705 - 财政年份:2023
- 资助金额:
$ 36.55万 - 项目类别:
Creation of the active fiber-type device by glass crystallization for next-generation light control
通过玻璃结晶创建用于下一代光控制的有源光纤型装置
- 批准号:
22KJ0290 - 财政年份:2023
- 资助金额:
$ 36.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
INNOVATION FUNNEL FOR FETAL MONITORING CHALLENGE - COORDINATION CENTER
胎儿监护挑战的创新漏斗 - 协调中心
- 批准号:
10936562 - 财政年份:2023
- 资助金额:
$ 36.55万 - 项目类别:
Extraordinary Dispersion Engineering In Enabling Ultrafast Swept Source visiblelight Optical Coherence Tomography
非凡的色散工程实现超快扫频源可见光光学相干断层扫描
- 批准号:
10698705 - 财政年份:2023
- 资助金额:
$ 36.55万 - 项目类别: