OP: Super-resolution imaging of plasmon-molecule interactions

OP:等离子体分子相互作用的超分辨率成像

基本信息

  • 批准号:
    1807269
  • 负责人:
  • 金额:
    $ 43.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Optical microscopes, such as those found in almost every high school to look at cells, have an inherent limit to their spatial resolution. They cannot resolve two objects that are closer to each other than the wavelength of light, which for visible colors is about 500 nm, or about 1/100 the diameter of a human hair. Recently super-resolution microscopes have been developed that can resolve individual molecules that are only 10 nm apart. Super-resolution microscopy has had tremendous success when imaging fluorescent dyes near other molecules, such as proteins, but it has trouble when the molecule is located near a metal nanostructure. The problem arises when the molecule interacts with the loosely held electrons in the metal, which blurs its location. With support from the Macromolecular, Supramolecular and Nanochemistry Program in the Division of Chemistry, Professor Willets at Temple University is studying the interaction of fluorescent molecules with metal nanoparticles. Professor Willets and her students are developing protocols that can better pinpoint the location of the fluorescent molecule. The project could pave the way to producing higher fidelity super-resolution images, which may help to advance nanotechnologies for biosensing, nanomedicine, and solar energy conversion. The work also provides training opportunities for graduate and undergraduate students, furthering the development of the Nation's scientific workforce. In addition, the Willets lab is actively engaged with the 9th grade science classes at Freire Charter School in downtown Philadelphia, helping the students to foster an appreciation for scientific exploration and discovery.Working alongside her students, Professor Willets is functionalizing gold nanorods and nanospheres at specific sites with fluorescently-labeled DNA. A combination of super-resolution imaging and polarization-resolved microscopy is then used to track how the position and orientation of the fluorescent molecules impacts the localization precision of the fluorescent molecule. In super-resolution imaging, single fluorescent molecules are localized by fitting their diffraction-limited emission to a model function, such as a two-dimensional Gaussian, to localize their spatial position with better than 10 nm precision. However, coupling between the fluorescent emitter and the plasmon modes of the nanostructure impacts the localization accuracy, resulting in the calculated position of the fluorescent molecule being shifted from its true position. Theoretical modeling provides insight into how the position and orientation of a single molecule relative to the plasmonic nanostructure affects the localization error. By creating well-defined hybrid organic-plasmonic nanoparticles, the team is developing new analysis tools to extract information hidden in the fluorescence images to improve agreement between the super-resolved images and the actual nanostructure properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光学显微镜,例如几乎每所高中都配备的用于观察细胞的光学显微镜,其空间分辨率具有固有的限制。它们无法分辨两个距离小于光波长的物体,可见光的波长约为 500 nm,约为人类头发直径的 1/100。最近开发出超分辨率显微镜,可以分辨相距仅 10 nm 的单个分子。超分辨率显微镜在对其他分子(例如蛋白质)附近的荧光染料进行成像时取得了巨大成功,但当分子位于金属纳米结构附近时,它就会遇到麻烦。当分子与金属中松散的电子相互作用时,就会出现问题,从而模糊了其位置。在化学系高分子、超分子和纳米化学项目的支持下,天普大学的 Willets 教授正在研究荧光分子与金属纳米粒子的相互作用。威利茨教授和她的学生正在开发能够更好地确定荧光分子位置的方案。 该项目可以为产生更高保真度的超分辨率图像铺平道路,这可能有助于推进生物传感、纳米医学和太阳能转换的纳米技术。这项工作还为研究生和本科生提供培训机会,促进国家科学劳动力的发展。此外,Willets 实验室还积极参与费城市中心 Freire Charter School 的 9 年级科学课程,帮助学生培养对科学探索和发现的鉴赏力。Willets 教授与她的学生一起工作,正在对金纳米棒和纳米球进行功能化。带有荧光标记 DNA 的特定位点。 然后结合超分辨率成像和偏振分辨显微镜来跟踪荧光分子的位置和方向如何影响荧光分子的定位精度。 在超分辨率成像中,通过将单个荧光分子的衍射极限发射拟合到模型函数(例如二维高斯函数)来定位单个荧光分子,以优于 10 nm 的精度定位其空间位置。 然而,荧光发射器和纳米结构的等离激元模式之间的耦合会影响定位精度,导致荧光分子的计算位置偏离其真实位置。 理论建模提供了关于单个分子相对于等离子体纳米结构的位置和方向如何影响定位误差的见解。 通过创建明确的混合有机等离子体纳米粒子,该团队正在开发新的分析工具来提取隐藏在荧光图像中的信息,以提高超分辨率图像与实际纳米结构特性之间的一致性。该奖项反映了 NSF 的法定使命,并已通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Willets其他文献

Processes at nanopores and bio-nanointerfaces: general discussion
  • DOI:
    10.1039/c8fd90023j
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Hassan Alzahrani;Christophe Antoine;Lane Baker;Sebastien Balme;Gourav Bhattacharya;Paul W. Bohn;Qiong Cai;Chrys Chikere;Richard M. Crooks;Naren Das;Martin Edwards;Cyril Ehi-Eromosele;Niklas Ermann;Lei Jiang;Frederic Kanoufi;Christine Kranz;Yitao Long;Julie MacPherson;Kim McKelvey;Michael Mirkin;Richard Nichols;Wojciech Nogala;Juan Pelta;Hang Ren;Jennifer Rudd;Wolfgang Schuhmann;Zuzanna Siwy;Zhongqun Tian;Patrick Unwin;Liping Wen;Henry White;Katherine Willets;Yanfang Wu;Yilun Ying
  • 通讯作者:
    Yilun Ying
Dynamics of nanointerfaces: general discussion
  • DOI:
    10.1039/c8fd90026d
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Hassan Alzahrani;Cameron Bentley;Rob Burrows;Chan Cao;Qiong Cai;Chrys Chikere;Richard M. Crooks;Johan Dunevall;Martin Edwards;Andrew Ewing;Rui Gao;Robert Hillman;Mohi Kahram;Frederic Kanoufi;Christine Kranz;Jean-François Lemineur;Yitao Long;Kim McKelvey;Michael Mirkin;Stacy Moore;Wojciech Nogala;Hang Ren;Wolfgang Schuhmann;Patrick Unwin;Andrea Vezzoli;Henry White;Katherine Willets;Zhugen Yang;Yilun Ying
  • 通讯作者:
    Yilun Ying

Katherine Willets的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katherine Willets', 18)}}的其他基金

Collaborative Research: Workshop: Challenges and Prospects for the Next 10 Years of Nanochemistry
合作研究:研讨会:纳米化学未来十年的挑战与前景
  • 批准号:
    2316672
  • 财政年份:
    2023
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
  • 批准号:
    2118389
  • 财政年份:
    2021
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Standard Grant
Synchronizing the chemical composition of silver nanoparticle surfaces
同步银纳米粒子表面的化学成分
  • 批准号:
    2003613
  • 财政年份:
    2020
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Nanoscale Temperature Manipulation via Plasmonic Fano Interferences
DMREF:协作研究:通过等离子体 Fano 干扰进行纳米级温度操纵
  • 批准号:
    1728340
  • 财政年份:
    2017
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Standard Grant
Understanding plasmon-enhanced electromagnetic hot spots for surface-enhanced spectroscopies
了解表面增强光谱的等离子体增强电磁热点
  • 批准号:
    1540927
  • 财政年份:
    2015
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Continuing Grant
Probing the location, number, and function of surface-bound antibodies on plasmonic nanoparticle biosensors using super-resolution fluorescence imaging
使用超分辨率荧光成像探测等离子体纳米颗粒生物传感器上表面结合抗体的位置、数量和功能
  • 批准号:
    1540926
  • 财政年份:
    2015
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Standard Grant
Understanding plasmon-enhanced electromagnetic hot spots for surface-enhanced spectroscopies
了解表面增强光谱的等离子体增强电磁热点
  • 批准号:
    1409178
  • 财政年份:
    2014
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Continuing Grant
Probing the location, number, and function of surface-bound antibodies on plasmonic nanoparticle biosensors using super-resolution fluorescence imaging
使用超分辨率荧光成像探测等离子体纳米颗粒生物传感器上表面结合抗体的位置、数量和功能
  • 批准号:
    1402610
  • 财政年份:
    2014
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻SUPER WOMAN 3 (SPW3) 基因调控花器官发育的分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
基于质谱的Super SILAC结合膜富集技术解析镁离子相关蛋白调控网络在Ⅲ型前列腺炎中的作用机制研究
  • 批准号:
    22164007
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
Triptolide通过调控Super-enhancer抑制抗体产生改善抗体介导的移植肾排斥反应
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
发展双模态超分辨率全景成像技术,描绘自噬和迁移性胞吐过程中的细胞器互作网络
  • 批准号:
    92054301
  • 批准年份:
    2020
  • 资助金额:
    900.0 万元
  • 项目类别:
    重大研究计划
Max-plus代数上的super本征问题
  • 批准号:
    11901486
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing single-photon super-resolution microscopy
开发单光子超分辨率显微镜
  • 批准号:
    EP/Y023137/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Research Grant
Super-resolution platform to accelerate biological and molecular research
加速生物和分子研究的超分辨率平台
  • 批准号:
    LE240100134
  • 财政年份:
    2024
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
SUPer-REsolution non-invasive Muscle measurements with miniaturised magnetIc SEnsors (SUPREMISE)
使用微型磁性传感器 (SUPREMISE) 进行超分辨率非侵入性肌肉测量
  • 批准号:
    EP/X031950/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Fellowship
Quantum-limited super-resolution imaging
量子限制超分辨率成像
  • 批准号:
    EP/Y029127/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Fellowship
Super-resolution 3D ultrasound tomography for material microstructure characterisation
用于材料微观结构表征的超分辨率 3D 超声断层扫描
  • 批准号:
    2815310
  • 财政年份:
    2023
  • 资助金额:
    $ 43.94万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了