Developing Thermal Hybrid Exchange-Correlation Functionals for Accurate Prediction of Transport and Optical Properties of Warm Dense Plasmas
开发热混合交换相关函数以准确预测热致密等离子体的输运和光学特性
基本信息
- 批准号:1802964
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Nobel Prize-winning method of density-functional theory (DFT) has been widely used for important applications to better understand the physics and chemistry of nature, as well as to improve our daily life. Examples of DFT applications range from inventing materials of specific functions, to understanding chemical reactions for better products, to designing drugs to cure cancers. The success of DFT relies on the accuracy of the approximation of how particles in a material interact with each other, the so-called exchange-correlation (XC) free-energy density functional. So far, most of the available XC-functionals have been limited to zero-temperature cases. In this research project, finite-temperature XC-functionals will be developed to significantly improve the predictive capability of DFT for plasma-physics and materials studies. The outcome of this research project is expected to make a significant difference in a variety of scientific fields and applications such as planetary science, astrophysics, fusion-energy and national defense applications, as well as to make a positive impact on the society through delivering tools for discovering better materials and designing efficient drugs.Matter at warm dense conditions exists vastly in the universe -- from shocks and inertial confinement fusion implosions created in laboratories to planetary cores and astrophysical objects such as brown and white dwarfs. Thorough understanding of the properties of warm-dense matter, non-ideal and "exotic" plasmas hold the key to unravel many mysteries in planetary and astrophysical sciences; for example, the possible H-He demixing on Saturn. Reliably predicting the transport and optical properties of matter at such extreme conditions heavily depends on the accuracy of XC functionals required by the DFT method. In this project, a three-step research program will be established to develop accurate finite-temperature hybrid XC-functionals by: (i) Assessing the available thermal free-energy functional performance to identify the state conditions wherein those current functionals fail; (ii) Developing thermal-hybrid and thermal-screened hybrid XC functionals that correspond to those proven to be accurate for the energy gap in the zero-temperature case; and (iii) Applying the developed thermal hybrid XC-functionals to warm-dense-plasma simulations to benchmark with experiments and deliver a useful software to the broad computational science community. In particular, the PIs will release the resulting software package as open source and incorporate it into the standard distribution for the existing Quantum-Espresso and ABINIT computational packages. This will allow a wider growth of the project. This aspect is of special interest to the software cluster in the Office of Advanced Cyberinfrastructure, which has provided co-funding for this award.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
获得诺贝尔奖的密度泛函理论(DFT)方法已被广泛应用于重要应用,以更好地理解自然的物理和化学,以及改善我们的日常生活。 DFT 应用的例子包括发明特定功能的材料、了解化学反应以获得更好的产品、设计治疗癌症的药物。 DFT 的成功依赖于材料中粒子如何相互作用的近似精度,即所谓的交换相关 (XC) 自由能密度泛函。到目前为止,大多数可用的 XC 泛函仅限于零温度情况。在该研究项目中,将开发有限温度 XC 泛函,以显着提高等离子体物理和材料研究中 DFT 的预测能力。该研究项目的成果预计将在行星科学、天体物理学、聚变能源和国防应用等各种科学领域和应用中产生重大影响,并通过提供工具对社会产生积极影响宇宙中广泛存在着温暖致密条件下的物质——从实验室中产生的冲击和惯性约束聚变内爆,到行星核心和褐矮星、白矮星等天体物理物体。彻底了解热致密物质、非理想和“奇异”等离子体的特性是解开行星和天体物理科学中许多谜团的关键;例如,土星上可能发生的氢氦分层。在这种极端条件下可靠地预测物质的传输和光学特性在很大程度上取决于 DFT 方法所需的 XC 泛函的准确性。在该项目中,将建立一个三步研究计划,通过以下方式开发精确的有限温度混合 XC 泛函: (i) 评估可用的热自由能泛函性能,以确定这些当前泛函失效的状态条件; (ii) 开发热混合和热筛选混合 XC 泛函,这些泛函对应于那些被证明对于零温情况下能隙准确的泛函; (iii) 将开发的热混合 XC 泛函应用于热致密等离子体模拟,以对实验进行基准测试,并向广泛的计算科学界提供有用的软件。特别是,PI 将以开源方式发布最终的软件包,并将其纳入现有 Quantum-Espresso 和 ABINIT 计算包的标准发行版中。这将使该项目获得更广泛的发展。高级网络基础设施办公室的软件集群对这一点特别感兴趣,该办公室为该奖项提供了共同资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Status of free-energy representations for the homogeneous electron gas
- DOI:10.1103/physrevb.99.195134
- 发表时间:2019-05-20
- 期刊:
- 影响因子:3.7
- 作者:V. Karasiev;S. Trickey;J. Dufty
- 通讯作者:J. Dufty
Improved first-principles equation-of-state table of deuterium for high-energy-density applications
改进的氘第一性原理状态方程表,适用于高能量密度应用
- DOI:10.1103/physrevb.104.144104
- 发表时间:2021-10-12
- 期刊:
- 影响因子:3.7
- 作者:D. Mihaylov;V. Karasiev;S. X. Hu;J. R. Rygg;V. Goncharov;G. W. Collins
- 通讯作者:G. W. Collins
Meta-GGA exchange-correlation free energy density functional to increase the accuracy of warm dense matter simulations
Meta-GGA 交换相关自由能量密度可提高热致密物质模拟的准确性
- DOI:10.1103/physrevb.105.l081109
- 发表时间:2022-02-18
- 期刊:
- 影响因子:3.7
- 作者:V. Karasiev;D. Mihaylov;S. Hu
- 通讯作者:S. Hu
Fully consistent density functional theory determination of the insulator-metal transition boundary in warm dense hydrogen
热致密氢中绝缘体-金属转变边界的完全一致密度泛函理论测定
- DOI:10.1103/physrevresearch.2.032065
- 发表时间:2020-02-13
- 期刊:
- 影响因子:0
- 作者:J. Hinz;V. Karasiev;Suxing Hu;M. Zaghoo;D. Mejía;S. Trickey;L. Calderin
- 通讯作者:L. Calderin
Thermal hybrid exchange-correlation density functional for improving the description of warm dense matter
热混合交换相关密度函数可改善热致密物质的描述
- DOI:10.1103/physrevb.101.245141
- 发表时间:2020-06
- 期刊:
- 影响因子:3.7
- 作者:Mihaylov, D. I.;Karasiev, V. V.;Hu, S. X.
- 通讯作者:Hu, S. X.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valentin Karasev其他文献
Valentin Karasev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valentin Karasev', 18)}}的其他基金
Advancing Machine-Learning Augmented Free-Energy Density Functionals for Fast and Accurate Quantum Simulations of Warm Dense Plasmas
推进机器学习增强自由能密度泛函,以实现快速、准确的热致密等离子体量子模拟
- 批准号:
2205521 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Advancing Machine-Learning Augmented Free-Energy Density Functionals for Fast and Accurate Quantum Simulations of Warm Dense Plasmas
推进机器学习增强自由能密度泛函,以实现快速、准确的热致密等离子体量子模拟
- 批准号:
2205521 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
自蔓延反应产热辅助的金属箔片微电阻焊连接机理与工艺调控研究
- 批准号:52375357
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
cGAS-STING信号通路调控树突状细胞介导的银屑病血热证发病机制及凉血潜阳法干预研究
- 批准号:82374445
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于T形扫描热探针技术的微观运动界面非平衡能量传递过程研究
- 批准号:52376159
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道微生物通过胆汁酸诱导宿主脂肪产热的分子机制研究
- 批准号:32302709
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Hybrid Thermal Probe and Laser for Direct Writing of Advanced Nano Sensors (HyProLaSens)
用于直接写入高级纳米传感器的混合热探针和激光 (HyProLaSens)
- 批准号:
531412015 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Major Research Instrumentation
Thermal Management for the Hybrid Electric Regional Aircraft
混合动力电动支线飞机的热管理
- 批准号:
10064252 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
EU-Funded
Development of hybrid thermal model for small bodies integrated shape and roughness models
开发小型物体集成形状和粗糙度模型的混合热模型
- 批准号:
23K03478 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CREATE - Hybrid Thermal Electric Microgrid (HyTEM)
CREATE - 混合热电微电网 (HyTEM)
- 批准号:
554770-2021 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Collaborative Research and Training Experience
CREATE - Hybrid Thermal Electric Microgrid (HyTEM)
CREATE - 混合热电微电网 (HyTEM)
- 批准号:
554770-2021 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Collaborative Research and Training Experience