High Order Multi-Scale Numerical Methods for All-Mach Number Flows
全马赫数流的高阶多尺度数值方法
基本信息
- 批准号:1818924
- 负责人:
- 金额:$ 26.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary goal of this project is the design of highly accurate and multi-scale numerical methods for all-speed flow simulations. To the best of our knowledge, highly accurate multi-scale solvers for all-Mach number flows are still underdeveloped. The proposed work is expected to establish close connections on existing state-of-art computational tools for compressible flow (with shock capturing techniques) and incompressible flows (with projection and divergence cleaning techniques). Successful methodology developments for all-speed flow simulations will have a broad impact for a wide range of computational fluid dynamics (CFD)-related applications. The proposed research work in algorithm design and analysis will promote/benefit from the demands from CFD applications fields. Further impact comes from the multidisciplinary nature of the proposed research, publications, participation and organization of mini-symposium sections in conferences, as well as the training of students.High order multi-scale solvers for all-Mach number flows are proposed. The PI seeks to develop a uniform framework to build up high order solvers that could effectively capture shocks without numerical oscillations for the compressible Euler system, and would successfully approximate the incompressible solutions of the system with proper divergence cleaning steps for low Mach flows without the need in resolving acoustic waves. In particular, the main focus would be finite difference schemes with weighted essentially non-oscillatory (WENO) reconstructions coupled with proper implicit-explicit (IMEX) Runge Kutta (RK) treatments with the following properties: (1) the schemes can robustly capture shock fronts in the compressible regime when the Mach number is of order 1; (2) the schemes automatically become high order, stable and consistent solvers for the incompressible Euler system when the Mach number approaches 0; (3) the schemes are high order accurate in both space and in time both when the acoustic waves are well-resolved and are under-resolved. Along this direction, the PI develops a thorough plan in methodology development, stability and asymptotic preserving analysis, as well as extensive benchmarked tests for all-Mach number flows. Further extensions to the Navier-Stokes system with additional consideration of viscous terms and special focus on boundary conditions will be explored.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要目标是设计全速流量模拟的高度准确和多尺度的数值方法。据我们所知,全程数量流的高度准确的多尺度求解器仍然不发达。预计拟议的工作将在现有的最新计算工具上建立可压缩流(具有冲击捕获技术)和不可压缩流(具有投影和发散清洁技术)的密切连接。全速流量模拟的成功方法发展将对广泛的计算流体动力学(CFD)相关应用产生广泛的影响。算法设计和分析的拟议研究工作将从CFD应用领域的需求中促进/受益。进一步的影响来自拟议的研究,出版物,参与和组织迷你群体中的多学科性质,以及对学生的培训。提出了全麦计量数流的高订单多规模求解器。 PI试图开发一个统一的框架来建立高阶求解器,这些框架可以有效地捕获可压缩欧拉系统的数值振荡而无需进行数值振荡的冲击,并将成功地近似于系统的不可压缩解决方案,并使用适当的差异清洁步骤,用于低头流动,而无需在解决声波方面进行差异。特别是,主要重点是具有加权基本非振荡(WENO)重建的有限差异方案,并结合适当的隐式解释(IMEX)Runge Kutta(RK)处理,并具有以下特性:(1)该方案可以在Mach Chumber cord 1 of Mach编号的情况下强有力地捕获可压缩的震动阵线的震惊阵线。 (2)当马赫数接近0时,该方案会自动变为不可压缩的Euler系统的高阶,稳定且一致的求解器; (3)当声波良好且分辨不足时,方案在空间和时间上都非常准确。沿着这个方向,PI制定了方法论开发,稳定性和渐近保存分析的详尽计划,以及针对全麦数量流的广泛基准测试。将探讨Navier-Stokes系统的进一步扩展,并考虑了粘性条款,并将特别关注边界条件。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估审查标准通过评估来支持的。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability-enhanced AP IMEX1-LDG method: energy-based stability and rigorous AP property
- DOI:10.1137/20m1336503
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Zhichao Peng;Yingda Cheng;Jing-Mei Qiu;Fengyan Li
- 通讯作者:Zhichao Peng;Yingda Cheng;Jing-Mei Qiu;Fengyan Li
High order semi-Lagrangian discontinuous Galerkin method coupled with Runge-Kutta exponential integrators for nonlinear Vlasov dynamics
- DOI:10.1016/j.jcp.2020.110036
- 发表时间:2021-02-15
- 期刊:
- 影响因子:4.1
- 作者:Cai, Xiaofeng;Boscarino, Sebastiano;Qiu, Jing-Mei
- 通讯作者:Qiu, Jing-Mei
Stability-enhanced AP IMEX-LDG schemes for linear kinetic transport equations under a diffusive scaling
- DOI:10.1016/j.jcp.2020.109485
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Zhichao Peng;Yingda Cheng;Jing-Mei Qiu;Fengyan Li
- 通讯作者:Zhichao Peng;Yingda Cheng;Jing-Mei Qiu;Fengyan Li
An Eulerian-Lagrangian discontinuous Galerkin method for transport problems and its application to nonlinear dynamics
- DOI:10.1016/j.jcp.2021.110392
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Xiaofeng Cai;Jing-Mei Qiu;Yang Yang-Yang
- 通讯作者:Xiaofeng Cai;Jing-Mei Qiu;Yang Yang-Yang
A High-Order Semi-Lagrangian Finite Difference Method for Nonlinear Vlasov and BGK Models
非线性Vlasov和BGK模型的高阶半拉格朗日有限差分法
- DOI:10.1007/s42967-021-00156-z
- 发表时间:2022
- 期刊:
- 影响因子:1.6
- 作者:Li, Linjin;Qiu, Jingmei;Russo, Giovanni
- 通讯作者:Russo, Giovanni
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing-Mei Qiu其他文献
High-Order Mass-Conservative Semi-Lagrangian Methods for Transport Problems
- DOI:
10.1016/bs.hna.2016.06.002 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jing-Mei Qiu - 通讯作者:
Jing-Mei Qiu
Krylov-based adaptive-rank implicit time integrators for stiff problems with application to nonlinear Fokker-Planck kinetic models
- DOI:
10.1016/j.jcp.2024.113332 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Hamad El Kahza;William Taitano;Jing-Mei Qiu;Luis Chacón - 通讯作者:
Luis Chacón
A hierarchical uniformly high order DG-IMEX scheme for the 1D BGK equation
一维 BGK 方程的分层一致高阶 DG-IMEX 格式
- DOI:
10.1016/j.jcp.2017.01.032 - 发表时间:
2017-05 - 期刊:
- 影响因子:4.1
- 作者:
Tao Xiong;Jing-Mei Qiu - 通讯作者:
Jing-Mei Qiu
Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation
- DOI:
10.1016/j.jcp.2012.09.014 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:
- 作者:
Wei Guo;Jing-Mei Qiu - 通讯作者:
Jing-Mei Qiu
Jing-Mei Qiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing-Mei Qiu', 18)}}的其他基金
Eulerian-Lagrangian Runge-Kutta Discontinuous Galerkin Methods for Nonlinear Kinetics and Fluid Models
非线性动力学和流体模型的欧拉-拉格朗日龙格-库塔不连续伽辽金方法
- 批准号:
2111253 - 财政年份:2021
- 资助金额:
$ 26.24万 - 项目类别:
Standard Grant
A High Order Discontinuous Galerkin Multi-Scale Approach for Kinetic-Hydrodynamic Simulations
运动流体动力学模拟的高阶间断伽辽金多尺度方法
- 批准号:
1834686 - 财政年份:2018
- 资助金额:
$ 26.24万 - 项目类别:
Standard Grant
A High Order Discontinuous Galerkin Multi-Scale Approach for Kinetic-Hydrodynamic Simulations
运动流体动力学模拟的高阶间断伽辽金多尺度方法
- 批准号:
1522777 - 财政年份:2015
- 资助金额:
$ 26.24万 - 项目类别:
Standard Grant
A High Order Semi-Lagrangian Approach for the Vlasov Equation
Vlasov方程的高阶半拉格朗日方法
- 批准号:
1217008 - 财政年份:2012
- 资助金额:
$ 26.24万 - 项目类别:
Standard Grant
相似国自然基金
复杂结构化环境下大规模多移动机器人的死锁及协同路径规划问题研究
- 批准号:62373139
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大规模MIMO低轨卫星物联网多波束传输技术
- 批准号:62301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向动态增效的大规模双馈风电机组群多机协调优化控制方法研究
- 批准号:52307052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低轨卫星通信系统的稀疏多域扩展大规模接入方案设计
- 批准号:62301123
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向智慧矿山多源异构数据计算的大规模集群调度优化方法
- 批准号:52304185
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Numerical Simulation of Hypersonic Turbulent Flow by Spatiotemporal Multi-Scale Reduced Order Model
时空多尺度降阶模型高超声速湍流数值模拟
- 批准号:
23KJ0127 - 财政年份:2023
- 资助金额:
$ 26.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Thermo-mechanical coupled gradient-enhanced reduced order multi-scale analysis for the next-generation material design
用于下一代材料设计的热机耦合梯度增强降阶多尺度分析
- 批准号:
20K14603 - 财政年份:2020
- 资助金额:
$ 26.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A High Order Discontinuous Galerkin Multi-Scale Approach for Kinetic-Hydrodynamic Simulations
运动流体动力学模拟的高阶间断伽辽金多尺度方法
- 批准号:
1834686 - 财政年份:2018
- 资助金额:
$ 26.24万 - 项目类别:
Standard Grant
Parallel High-Order Adaptive Mesh Refinement Finite-Volume Schemes for Multi-Scale Physically-Complex Flows
多尺度物理复杂流的并行高阶自适应网格细化有限体积方案
- 批准号:
RGPIN-2014-04583 - 财政年份:2018
- 资助金额:
$ 26.24万 - 项目类别:
Discovery Grants Program - Individual
Bridging Disparate Structural/Functional Scales: Multiscale Modeling of the Chromatin Fiber and RNA Tertiary Structures
桥接不同的结构/功能尺度:染色质纤维和 RNA 三级结构的多尺度建模
- 批准号:
10220065 - 财政年份:2017
- 资助金额:
$ 26.24万 - 项目类别: