High Order Multi-Scale Numerical Methods for All-Mach Number Flows

全马赫数流的高阶多尺度数值方法

基本信息

  • 批准号:
    1818924
  • 负责人:
  • 金额:
    $ 26.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The primary goal of this project is the design of highly accurate and multi-scale numerical methods for all-speed flow simulations. To the best of our knowledge, highly accurate multi-scale solvers for all-Mach number flows are still underdeveloped. The proposed work is expected to establish close connections on existing state-of-art computational tools for compressible flow (with shock capturing techniques) and incompressible flows (with projection and divergence cleaning techniques). Successful methodology developments for all-speed flow simulations will have a broad impact for a wide range of computational fluid dynamics (CFD)-related applications. The proposed research work in algorithm design and analysis will promote/benefit from the demands from CFD applications fields. Further impact comes from the multidisciplinary nature of the proposed research, publications, participation and organization of mini-symposium sections in conferences, as well as the training of students.High order multi-scale solvers for all-Mach number flows are proposed. The PI seeks to develop a uniform framework to build up high order solvers that could effectively capture shocks without numerical oscillations for the compressible Euler system, and would successfully approximate the incompressible solutions of the system with proper divergence cleaning steps for low Mach flows without the need in resolving acoustic waves. In particular, the main focus would be finite difference schemes with weighted essentially non-oscillatory (WENO) reconstructions coupled with proper implicit-explicit (IMEX) Runge Kutta (RK) treatments with the following properties: (1) the schemes can robustly capture shock fronts in the compressible regime when the Mach number is of order 1; (2) the schemes automatically become high order, stable and consistent solvers for the incompressible Euler system when the Mach number approaches 0; (3) the schemes are high order accurate in both space and in time both when the acoustic waves are well-resolved and are under-resolved. Along this direction, the PI develops a thorough plan in methodology development, stability and asymptotic preserving analysis, as well as extensive benchmarked tests for all-Mach number flows. Further extensions to the Navier-Stokes system with additional consideration of viscous terms and special focus on boundary conditions will be explored.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要目标是设计用于全速流动模拟的高精度和多尺度数值方法。据我们所知,用于全马赫数流的高精度多尺度求解器仍然不发达。拟议的工作预计将在现有最先进的可压缩流(具有冲击捕获技术)和不可压缩流(具有投影和发散清洁技术)的计算工具上建立紧密的联系。全速流动模拟的成功方法开发将对各种计算流体动力学 (CFD) 相关应用产生广泛影响。拟议的算法设计和分析研究工作将促进/受益于 CFD 应用领域的需求。进一步的影响来自于拟议的研究、出版物、会议中小型研讨会部分的参与和组织以及学生的培训的多学科性质。提出了用于全马赫数流的高阶多尺度求解器。该 PI 寻求开发一个统一的框架来构建高阶求解器,该求解器可以有效地捕获可压缩欧拉系统的冲击而无需数值振荡,并且可以通过针对低马赫流的适当发散清理步骤成功地逼近系统的不可压缩解,而无需解决声波问题。特别是,主要关注点是具有加权基本非振荡 (WENO) 重建的有限差分方案,加上适当的隐式显式 (IMEX) 龙格库塔 (RK) 处理,具有以下属性:(1) 该方案可以稳健地捕获冲击当马赫数为 1 时,前沿处于可压缩状态; (2)当马赫数接近0时,该方案自动成为不可压缩欧拉系统的高阶、稳定、一致的求解器; (3)当声波良好分辨和欠分辨时,该方案在空间和时间上都具有高阶精度。沿着这个方向,PI 在方法开发、稳定性和渐近保持分析以及全马赫数流的广泛基准测试方面制定了全面的计划。将探索对纳维-斯托克斯系统的进一步扩展,额外考虑粘性项并特别关注边界条件。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability-enhanced AP IMEX1-LDG method: energy-based stability and rigorous AP property
  • DOI:
    10.1137/20m1336503
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhichao Peng;Yingda Cheng;Jing-Mei Qiu;Fengyan Li
  • 通讯作者:
    Zhichao Peng;Yingda Cheng;Jing-Mei Qiu;Fengyan Li
High order semi-Lagrangian discontinuous Galerkin method coupled with Runge-Kutta exponential integrators for nonlinear Vlasov dynamics
  • DOI:
    10.1016/j.jcp.2020.110036
  • 发表时间:
    2021-02-15
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Cai, Xiaofeng;Boscarino, Sebastiano;Qiu, Jing-Mei
  • 通讯作者:
    Qiu, Jing-Mei
An Eulerian-Lagrangian discontinuous Galerkin method for transport problems and its application to nonlinear dynamics
  • DOI:
    10.1016/j.jcp.2021.110392
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaofeng Cai;Jing-Mei Qiu;Yang Yang-Yang
  • 通讯作者:
    Xiaofeng Cai;Jing-Mei Qiu;Yang Yang-Yang
Stability-enhanced AP IMEX-LDG schemes for linear kinetic transport equations under a diffusive scaling
  • DOI:
    10.1016/j.jcp.2020.109485
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhichao Peng;Yingda Cheng;Jing-Mei Qiu;Fengyan Li
  • 通讯作者:
    Zhichao Peng;Yingda Cheng;Jing-Mei Qiu;Fengyan Li
A High-Order Semi-Lagrangian Finite Difference Method for Nonlinear Vlasov and BGK Models
非线性Vlasov和BGK模型的高阶半拉格朗日有限差分法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing-Mei Qiu其他文献

High-Order Mass-Conservative Semi-Lagrangian Methods for Transport Problems
  • DOI:
    10.1016/bs.hna.2016.06.002
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jing-Mei Qiu
  • 通讯作者:
    Jing-Mei Qiu
A hierarchical uniformly high order DG-IMEX scheme for the 1D BGK equation
一维 BGK 方程的分层一致高阶 DG-IMEX 格式
  • DOI:
    10.1016/j.jcp.2017.01.032
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Tao Xiong;Jing-Mei Qiu
  • 通讯作者:
    Jing-Mei Qiu

Jing-Mei Qiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing-Mei Qiu', 18)}}的其他基金

Eulerian-Lagrangian Runge-Kutta Discontinuous Galerkin Methods for Nonlinear Kinetics and Fluid Models
非线性动力学和流体模型的欧拉-拉格朗日龙格-库塔不连续伽辽金方法
  • 批准号:
    2111253
  • 财政年份:
    2021
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
A High Order Discontinuous Galerkin Multi-Scale Approach for Kinetic-Hydrodynamic Simulations
运动流体动力学模拟的高阶间断伽辽金多尺度方法
  • 批准号:
    1834686
  • 财政年份:
    2018
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
A High Order Discontinuous Galerkin Multi-Scale Approach for Kinetic-Hydrodynamic Simulations
运动流体动力学模拟的高阶间断伽辽金多尺度方法
  • 批准号:
    1522777
  • 财政年份:
    2015
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
A High Order Semi-Lagrangian Approach for the Vlasov Equation
Vlasov方程的高阶半拉格朗日方法
  • 批准号:
    1217008
  • 财政年份:
    2012
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant

相似国自然基金

大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于多源知识融合的大规模定日镜集群主动协同优化控制方法
  • 批准号:
    62373067
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于模块化多电平换流器技术的大规模锂电储能系统能量管控理论与方法研究
  • 批准号:
    62303017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模多层次低轨星座构型设计及捷变通感多波束技术研究
  • 批准号:
    62371054
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Numerical Simulation of Hypersonic Turbulent Flow by Spatiotemporal Multi-Scale Reduced Order Model
时空多尺度降阶模型高超声速湍流数值模拟
  • 批准号:
    23KJ0127
  • 财政年份:
    2023
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Thermo-mechanical coupled gradient-enhanced reduced order multi-scale analysis for the next-generation material design
用于下一代材料设计的热机耦合梯度增强降阶多尺度分析
  • 批准号:
    20K14603
  • 财政年份:
    2020
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A High Order Discontinuous Galerkin Multi-Scale Approach for Kinetic-Hydrodynamic Simulations
运动流体动力学模拟的高阶间断伽辽金多尺度方法
  • 批准号:
    1834686
  • 财政年份:
    2018
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
Parallel High-Order Adaptive Mesh Refinement Finite-Volume Schemes for Multi-Scale Physically-Complex Flows
多尺度物理复杂流的并行高阶自适应网格细化有限体积方案
  • 批准号:
    RGPIN-2014-04583
  • 财政年份:
    2018
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging Disparate Structural/Functional Scales: Multiscale Modeling of the Chromatin Fiber and RNA Tertiary Structures
桥接不同的结构/功能尺度:染色质纤维和 RNA 三级结构的多尺度建模
  • 批准号:
    10220065
  • 财政年份:
    2017
  • 资助金额:
    $ 26.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了