CHS: Small: Improving Usability and Reliability for Motor Imagery Brain Computer Interfaces
CHS:小型:提高运动想象脑机接口的可用性和可靠性
基本信息
- 批准号:1817226
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Brain-computer interfaces (BCIs) allow a user to interact with the world directly through brain activity. These systems are being developed to provide a communication method for users with severe motor impairments who are not able to control the movements of their arms, tongue, and even eyes well enough to communicate in the usual ways. While the cognitive abilities of these individuals are thought to be largely preserved, they are often described as being "locked in" to their bodies, unable to interact with the outside world through the usual means of typing, talking, etc. Electroencephalogram (EEG) based motor imagery BCIs attempt to distinguish brain activity by measuring electrical activity on the scalp caused by the user imagining moving different body parts. Commonly, such systems try to distinguish when the user is imagining moving their right or their left hand. Imagining different body parts can then be mapped to different tasks to allow a user to interact with the world (e.g., to turn a light on or off, or to move a robot arm to one object or another). The goal of this research is to make these types of systems easier for users to learn and more reliable, by improving the feedback that is given to the user and improving the classification of the brain signals. The work has the potential to open up this method of communication for more people, and project outcomes may have even broader impact by enabling us to learn more about brain signals that can be used for communication in BCIs. In addition, diverse graduate students will be trained in interdisciplinary research, and undergraduate students in the BCI class will work on small related projects, some of which will be presented to high school students to encourage and stimulate their interest in science.The ability of users to generate discriminable control signals is very variable. Moreover, environmental effects such as other brain processes, emotion and fatigue affect current BCI systems. The goal of this project is to improve the usability of EEG-based motor-imagery brain-computer interfaces. To this end, a multi-pronged approach will be used. First, richer feedback will give users a better visualization of the effects of their imagery and provide them with a better chance to learn how to discriminate the motor imagery of different body parts. Second, the machine classification of the EEG signal during motor imagery will be improved. This will include looking for other signals that may provide additional insight into the top-level state and goals of the user as well as developing new deep learning algorithms that can benefit from multi-task learning and transfer learning between individuals. Third, different closed-loop control methods will be explored to improve the total information transfer rate of the BCI as well as to reduce the number of training trials needed. The team's prior work has shown that interactive signals that respond to the feedback provided by the system are more robust to system estimation errors and non-stationarities. These signals can arise passively but also can be actively used by exploiting interactive commands that vary with the received feedback. Whether active control of interactive commands, or active control of standard commands with passive interactive recognition, performs better will be tested.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
脑部计算机界面(BCIS)允许用户通过大脑活动直接与世界互动。 正在开发这些系统,以为无法控制其手臂,舌头甚至眼睛的动作的严重运动障碍的用户提供通信方法,以便以通常的方式进行交流。 尽管认为这些人的认知能力在很大程度上被保存了,但通常被描述为“锁定”到他们的身体上,无法通过打字,说话等的通常手段与外界互动。基于电脑图(EEG)的电动图像BCIS BCIS试图通过在脑皮物上测量脑力活性来通过用户的体系进行测量来区分大脑活动。 通常,此类系统试图区分用户何时想象移动右手或左手。 然后可以将不同的身体部位映射到不同的任务,以使用户与世界互动(例如,打开或关闭灯,或将机器人臂移至一个对象或另一个对象)。 这项研究的目的是通过改善给用户的反馈并改善大脑信号的分类,使这些类型的系统更容易为用户学习和更可靠。 这项工作有可能为更多人开放这种交流方法,并且通过使我们能够更多地了解可用于BCIS通信的大脑信号的更多信息,可能会产生更大的影响。 此外,多元化的研究生将接受跨学科研究的培训,而BCI课程的本科生将从事小型相关项目,其中一些将呈现给高中生,以鼓励和刺激他们对科学的兴趣。此外,其他大脑过程,情绪和疲劳等环境影响会影响当前的BCI系统。 该项目的目的是提高基于脑电图的电动机象征脑机构接口的可用性。为此,将使用多管齐下的方法。 首先,更丰富的反馈将使用户更好地可视化图像的影响,并为他们提供更好的机会学习如何区分不同身体部位的运动图像。 其次,将改善运动图像期间脑电图信号的机器分类。 这将包括寻找其他信号,这些信号可能会提供有关用户顶级状态和目标的更多见解,以及开发新的深度学习算法,这些算法可以受益于个人之间的多任务学习和转移学习。 第三,将探索不同的闭环控制方法,以提高BCI的总信息传输率,并减少所需的培训试验数量。 该团队的先前工作表明,对系统提供的反馈做出响应的交互信号对系统估计错误和非平稳性更为强大。 这些信号可以被动地出现,但也可以通过利用随着收到的反馈而变化的交互式命令来积极使用。 无论是积极控制交互式命令还是通过被动互动识别的积极控制标准命令,都将得到更好的测试。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响评估审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EEG Reveals Familiarity by Controlling Confidence in Memory Retrieval
脑电图通过控制记忆检索的置信度来揭示熟悉程度
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Liao, Kueida;Mollison, Matthew V;Curran, Tim;de Sa, Virginia R
- 通讯作者:de Sa, Virginia R
Personalized Pain Detection in Facial Video with Uncertainty Estimation
- DOI:10.1109/embc46164.2021.9631056
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Xiaojing Xu;V. D. Sa
- 通讯作者:Xiaojing Xu;V. D. Sa
Multi-Subject Unsupervised Transfer with Weighted Subspace Alignment for Common Spatial Patterns
- DOI:10.1109/bci53720.2022.9735012
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Zhining Chen;Mahta Mousavi;V. D. Sa
- 通讯作者:Zhining Chen;Mahta Mousavi;V. D. Sa
Motor imagery performance from calibration to online control in EEG-based brain-computer interfaces
- DOI:10.1109/ner49283.2021.9441142
- 发表时间:2021-01-01
- 期刊:
- 影响因子:0
- 作者:Mousavi, Mahta;de Sa, Virginia R.
- 通讯作者:de Sa, Virginia R.
Set Size Effects on the P3b in a BCI Speller
在 BCI Speller 中设置 P3b 上的尺寸效果
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:D'Amico, Alessandro;de Sa, Virginia R.
- 通讯作者:de Sa, Virginia R.
共 8 条
- 1
- 2
Virginia de Sa的其他基金
CHS: Small: A Novel P300 Brain-Computer Interface
CHS:小型:新型 P300 脑机接口
- 批准号:15282141528214
- 财政年份:2015
- 资助金额:$ 50万$ 50万
- 项目类别:Continuing GrantContinuing Grant
HCC: Small: Towards more natural and interactive brain-computer interfaces
HCC:小:迈向更自然和交互式的脑机接口
- 批准号:12192001219200
- 财政年份:2012
- 资助金额:$ 50万$ 50万
- 项目类别:Continuing GrantContinuing Grant
Divvy: Robust and Interactive Cluster Analysis
Divvy:稳健且交互式的聚类分析
- 批准号:09630710963071
- 财政年份:2010
- 资助金额:$ 50万$ 50万
- 项目类别:Standard GrantStandard Grant
Lifelike visual feedback for brain-computer interface
脑机接口逼真的视觉反馈
- 批准号:07568280756828
- 财政年份:2008
- 资助金额:$ 50万$ 50万
- 项目类别:Standard GrantStandard Grant
IGERT: Vision and Learning in Humans and Machines
IGERT:人类和机器的视觉和学习
- 批准号:03334510333451
- 财政年份:2003
- 资助金额:$ 50万$ 50万
- 项目类别:Continuing GrantContinuing Grant
CAREER: Optimal Information Extraction in Intelligent Systems
职业:智能系统中的最佳信息提取
- 批准号:01339960133996
- 财政年份:2002
- 资助金额:$ 50万$ 50万
- 项目类别:Continuing GrantContinuing Grant
相似国自然基金
近地小天体的地基雷达天文观测研究和轨道改进技术
- 批准号:11973015
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
寨卡病毒感染导致小颅畸形的发病机制与防治研究
- 批准号:31730108
- 批准年份:2017
- 资助金额:324.0 万元
- 项目类别:重点项目
基于声发射信号改进经验小波分析的钢桥面板疲劳裂纹定量监测方法研究
- 批准号:51708164
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于改进同步挤压小波变换的时变结构参数识别与损伤识别研究
- 批准号:51608122
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于改进小波聚类的航空发动机转子系统故障诊断新方法研究
- 批准号:51365040
- 批准年份:2013
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
相似海外基金
CHS: Small: Improving Web Accessibility Through Multi-Resolution Mixed-Initiative Interaction Tools
CHS:小型:通过多分辨率混合主动交互工具提高 Web 可访问性
- 批准号:20078572007857
- 财政年份:2020
- 资助金额:$ 50万$ 50万
- 项目类别:Standard GrantStandard Grant
CHS: Small: Collaborative Research: Improving Mobile Device Input for Users who are Blind or Low Vision
CHS:小型:协作研究:改善盲人或低视力用户的移动设备输入
- 批准号:19092481909248
- 财政年份:2019
- 资助金额:$ 50万$ 50万
- 项目类别:Standard GrantStandard Grant
CHS: Small: Improving Everyday Ethics in Socio-technical Practice
CHS:小:改善社会技术实践中的日常道德规范
- 批准号:19097141909714
- 财政年份:2019
- 资助金额:$ 50万$ 50万
- 项目类别:Standard GrantStandard Grant
CHS: Small: Collaborative Research: Improving Mobile Device Input for Users who are Blind or Low Vision
CHS:小型:协作研究:改善盲人或低视力用户的移动设备输入
- 批准号:19099301909930
- 财政年份:2019
- 资助金额:$ 50万$ 50万
- 项目类别:Standard GrantStandard Grant
CHS: Small: Improving user trust of autonomous vehicles through human-vehicle collaboration
CHS:小型:通过人车协作提高用户对自动驾驶汽车的信任
- 批准号:19106031910603
- 财政年份:2019
- 资助金额:$ 50万$ 50万
- 项目类别:Standard GrantStandard Grant