RI: Small: A Cognitive Framework for Technical, Hard and Explainable Question Answering (THE-QA) with respect to Combined Textual and Visual Inputs
RI:小:结合文本和视觉输入的技术性、硬性和可解释性问答 (THE-QA) 的认知框架
基本信息
- 批准号:1816039
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding of visual and textual inputs are important aspects of Artificial Intelligence systems. Often such inputs are presented together to instruct and explain. As examples, an intelligent robot might learn about its tasks and environment by observing both language and gesture; and an intelligent system addressing scientific questions must interpret figures and diagrams along with text. While there has been a lot of research concerning visual understanding and textual understanding in isolation, there has been very little research that addresses them jointly. This project is developing a framework for answering hard questions about combined visual and textual inputs, and providing supporting explanations. By developing a system that integrates visual and linguistic information for this task, the project could provide the basis for automated tutoring systems in K-12 education, and interpretable interfaces for the workers operating intelligent machines. The project will employ an integrated approach of deep model-based visual recognition and natural language processing, and knowledge representation and reasoning to develop a question answering engine and its components. It will create a challenge corpus that has visual and textual inputs and questions about those inputs given in natural language. It will provide a baseline for semantic image and text parsing and reasoning-based question answering systems. It will develop semantic parsing of non-continuous text items, such as figures, diagrams, and graphs. It will enhance semantic parsing to various formats of natural language text and questions. It will develop methods to acquire knowledge and reasoning with them for answering questions and providing explanations to the answers. Together these contributions of the project will advance Artificial General Intelligence and allow future service robots and personal mobile applications to understand combined visual and textual inputs. The findings from this project will advance the development of knowledge-driven, reasoning-based question answering by filling the current gap on how to efficiently conduct explainable probabilistic reasoning over deep models. This helps to overcome the fragility of the trained visual and textual understanding models. It will also uncover the intrinsic connections between deep model-based vision and language understanding algorithms and probabilistic knowledge representation and reasoning by exploring a joint solution for answering the hard questions. In general, this project may result in advances in multiple sub-fields of Artificial Intelligence; namely, computer vision, natural language processing, and question answering; and may impact others such as robotics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对视觉和文本输入的理解是人工智能系统的重要方面。通常,这些输入会一起呈现以进行指导和解释。 例如,智能机器人可以通过观察语言和手势来了解其任务和环境;解决科学问题的智能系统必须能够解释图形和图表以及文本。虽然已经有很多关于视觉理解和文本理解的独立研究,但很少有研究将它们结合起来。该项目正在开发一个框架,用于回答有关视觉和文本输入相结合的难题,并提供支持性解释。通过为此任务开发一个集成视觉和语言信息的系统,该项目可以为 K-12 教育中的自动辅导系统以及操作智能机器的工人的可解释界面提供基础。该项目将采用基于深度模型的视觉识别和自然语言处理以及知识表示和推理的集成方法来开发问答引擎及其组件。它将创建一个挑战语料库,其中包含视觉和文本输入以及有关以自然语言给出的这些输入的问题。它将为语义图像和文本解析以及基于推理的问答系统提供基线。它将开发非连续文本项的语义解析,例如图形、图表和图表。它将增强对各种格式的自然语言文本和问题的语义解析。它将开发获取知识和推理的方法,以回答问题并对答案提供解释。该项目的这些贡献将共同推进通用人工智能,并允许未来的服务机器人和个人移动应用程序理解组合的视觉和文本输入。该项目的研究结果将填补当前如何在深度模型上有效进行可解释的概率推理的空白,从而推动知识驱动、基于推理的问答的发展。 这有助于克服经过训练的视觉和文本理解模型的脆弱性。它还将通过探索回答难题的联合解决方案,揭示基于深度模型的视觉和语言理解算法与概率知识表示和推理之间的内在联系。总体而言,该项目可能会带来人工智能多个子领域的进步;即计算机视觉、自然语言处理和问答;该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CLEVR_HYP: A Challenge Dataset and Baselines for Visual Question Answering with Hypothetical Actions over Images
- DOI:10.18653/v1/2021.naacl-main.289
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Shailaja Keyur Sampat;Akshay Kumar;Yezhou Yang;Chitta Baral
- 通讯作者:Shailaja Keyur Sampat;Akshay Kumar;Yezhou Yang;Chitta Baral
End-to-end Knowledge Retrieval with Multi-modal Queries
- DOI:10.48550/arxiv.2306.00424
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Man Luo;Zhiyuan Fang;Tejas Gokhale;Yezhou Yang;Chitta Baral
- 通讯作者:Man Luo;Zhiyuan Fang;Tejas Gokhale;Yezhou Yang;Chitta Baral
Video2Commonsense: Generating Commonsense Descriptions to Enrich Video Captioning
- DOI:10.18653/v1/2020.emnlp-main.61
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Zhiyuan Fang;Tejas Gokhale;Pratyay Banerjee;Chitta Baral;Yezhou Yang
- 通讯作者:Zhiyuan Fang;Tejas Gokhale;Pratyay Banerjee;Chitta Baral;Yezhou Yang
Weakly Supervised Relative Spatial Reasoning for Visual Question Answering
- DOI:10.1109/iccv48922.2021.00192
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Pratyay Banerjee;Tejas Gokhale;Yezhou Yang;Chitta Baral
- 通讯作者:Pratyay Banerjee;Tejas Gokhale;Yezhou Yang;Chitta Baral
Learning Action-Effect Dynamics for Hypothetical Vision-Language Reasoning Task
- DOI:10.48550/arxiv.2212.03866
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Shailaja Keyur Sampat;Pratyay Banerjee;Yezhou Yang;Chitta Baral
- 通讯作者:Shailaja Keyur Sampat;Pratyay Banerjee;Yezhou Yang;Chitta Baral
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chitta Baral其他文献
Reasoning About Effects of Concurrent Actions
关于并发操作的影响的推理
- DOI:
10.1016/s0743-1066(96)00140-9 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Chitta Baral;M. Gelfond - 通讯作者:
M. Gelfond
Formalizing Workflows as Collections of Condition-Action Rules
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Chitta Baral - 通讯作者:
Chitta Baral
Knowledge Representation, Reasoning and Declarative Problem Solving
- DOI:
10.1017/cbo9780511543357.013 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Chitta Baral - 通讯作者:
Chitta Baral
Finitary S5-Theories
有限S5理论
- DOI:
10.1007/978-3-319-11558-0_17 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Tran Cao Son;Enrico Pontelli;Chitta Baral;G. Gelfond - 通讯作者:
G. Gelfond
Extending Answer Set Planning with Sequence, Conditional, Loop, Non-Deterministic Choice, and Procedure Constructs
使用序列、条件、循环、非确定性选择和过程结构扩展答案集规划
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Tran Cao Son;Chitta Baral;Sheila A. McIlraith - 通讯作者:
Sheila A. McIlraith
Chitta Baral的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chitta Baral', 18)}}的其他基金
Doctoral Mentoring Consortium at International Joint Conference on Artificial Intelligence (IJCAI) 2019
2019年国际人工智能联合会议(IJCAI)博士生导师联盟
- 批准号:
1935906 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Student Travel Grant: 2014 Principles of Knowledge Representation and Reasoning Conference and Doctoral Consortium
学生旅费资助:2014年知识表示和推理原理会议及博士联盟
- 批准号:
1441741 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: Enabling collaboration in the creation of scientific databases from the published literature
EAGER:促进根据已发表文献创建科学数据库的合作
- 批准号:
0950440 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Knowledge Representation, Reasoning, and Problem Solving in a Cellular Domain
细胞领域的知识表示、推理和问题解决
- 批准号:
0412000 - 财政年份:2004
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Reasoning and Plannning with Sensing Actions and Their Applications
感知动作推理与规划及其应用
- 批准号:
0070463 - 财政年份:2000
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
A Systematic Approach to Reasoning about Actions and Change
推理行动和变革的系统方法
- 批准号:
0096287 - 财政年份:1999
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
A Systematic Approach to Reasoning about Actions and Change
推理行动和变革的系统方法
- 批准号:
9501577 - 财政年份:1995
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Research in Knowledge Representaion and Common Sense Reasoning
知识表示和常识推理研究
- 批准号:
9211662 - 财政年份:1992
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
电针治疗卒中后认知障碍新机制:下调HK2介导的海马Warburg效应调控小胶质细胞极化缓解神经炎症
- 批准号:82305403
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
橙汁通过橙皮苷介导的乙酸靶向Olfr78调控小胶质细胞极化改善轻度认知损伤者认知功能的研究
- 批准号:82304123
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群来源的短链脂肪酸靶向小胶质细胞延缓认知衰老的分子影像实验研究
- 批准号:82302261
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
甲亢通过RIPK1调控小胶质细胞介导的神经炎症导致认知功能障碍的机制
- 批准号:82370788
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小胶质细胞介导Tau病理聚集和传播参与放射后认知障碍的机制研究
- 批准号:82371408
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
RI: Small: Computational analysis of eye movements in reading: reader characteristics, cognitive state, and natural language processing
RI:小:阅读中眼动的计算分析:读者特征、认知状态和自然语言处理
- 批准号:
1815529 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: Small: Learning Dynamics and Evolution towards Cognitive Understanding of Videos
RI:小:视频认知理解的学习动态和演化
- 批准号:
1813709 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: Small: CompCog: Pique: A Cognitive Model of Curiosity for Personalizing Sequences of Learning Resources
RI:小:CompCog:Pique:用于个性化学习资源序列的好奇心认知模型
- 批准号:
1618810 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Cognitive models of the acquisition of vowels in context
RI:小:协作研究:在上下文中习得元音的认知模型
- 批准号:
1422987 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
RI: Small: Collaborative Research: Cognitive models of the acquisition of vowels in context
RI:小:协作研究:在上下文中习得元音的认知模型
- 批准号:
1421695 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant