III: Small: Collaborative Research: Network Analysis and Anomaly Detection via Global Curvatures

III:小型:协作研究:通过全局曲率进行网络分析和异常检测

基本信息

  • 批准号:
    1814931
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Curvatures of geometric shapes and topological spaces in higher dimension are natural and powerful generalizations of planes to higher dimensions, and play a fundamental role in physics, mathematics, and many other areas. In this collaborative interdisciplinary proposal involving one investigator each from the University of Illinois at Chicago and the Pennsylvania State University, the investigators will use powerful higher-dimensional curvature analysis methods to provide the foundations of systematic and computationally efficient approaches to find critical components, measure redundancies and detect anomalies in biological and social networks. There is a pressing need for this, as identification of critical components are crucial to the analysis of networks, and curvature-based analysis methods provide a principled way of satisfying this need using a systematic and rigorous theoretical framework to achieve a clear understanding. The proposed research will leverage further development of novel combinatorial tools previously developed by the investigators, in addition to developing new algorithmic and approximability techniques. The algorithms developed in the course of this project will be implemented for validation on simulated and real data and will lead to open-source software for the relevant research communities. In addition to substantial impacts in network analysis, the proposed research will have strong impacts on many other research areas in computational biology, neuroscience, and social network analysis. Other broader impacts will include integration of research and education via course and curriculum development, involvement of undergraduates, minorities and under-represented groups, effective dissemination of research, mentoring of undergraduate and graduate students, outreach and community involvement, and promoting diversity in related research and educational activities.To achieve the goals of this project, the investigators will explore two notions of curvature, namely Gromov-hyperbolic curvature based on the properties of geodesics and higher-order connectivities, and geometric curvatures based on identifying networks with geometric complexes and using combinatorialization of Ricci type curvatures. These curvature measures depend on non-trivial global properties, such as distributions of geodesics and higher-order correlations among nodes, of the given network as opposed to many other measures that are local in nature. The investigators will use these notions to identify non-trivial critical components of the network whose removal affects the change the network topology or dynamics in a significant manner. The investigators will formulate mathematically precise computational problems, study their properties, use novel algorithmic tools to design efficient algorithms, and implement the resulting algorithms to test their accuracy and efficiency. The complementary backgrounds of the two investigators, namely combinatorial optimization in computer science and computational biology (DasGupta) and modelling and analysis of biological and social networks (Albert), will make the two investigators a perfect team for the interdisciplinary applications in this proposal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高维几何形状和拓扑空间的曲率是平面到高维的自然而有力的推广,在物理、数学和许多其他领域发挥着基础作用。 在这项涉及伊利诺伊大学芝加哥分校和宾夕法尼亚州立大学各一名研究人员的跨学科合作提案中,研究人员将使用强大的高维曲率分析方法,为寻找关键组件、测量冗余的系统性和计算效率的方法提供基础并检测生物和社交网络中的异常情况。这是迫切需要的,因为关键组件的识别对于网络分析至关重要,而基于曲率的分析方法提供了一种满足这一需求的原则性方法,使用系统且严格的理论框架来实现清晰的理解。除了开发新的算法和近似技术之外,拟议的研究还将进一步开发研究人员之前开发的新型组合工具。该项目过程中开发的算法将用于对模拟和真实数据进行验证,并将为相关研究社区提供开源软件。除了对网络分析产生重大影响外,拟议的研究还将对计算生物学、神经科学和社交网络分析等许多其他研究领域产生重大影响。其他更广泛的影响将包括通过课程和课程开发整合研究和教育,本科生、少数族裔和代表性不足群体的参与,有效传播研究成果,指导本科生和研究生,外展和社区参与,以及促进相关研究的多样性为了实现该项目的目标,研究人员将探索两种曲率概念,即基于测地线和高阶连通性特性的格罗莫夫双曲曲率,以及基于识别具有几何复形的网络并使用Ricci 型曲率的组合。这些曲率度量取决于给定网络的重要全局属性,例如测地线的分布和节点之间的高阶相关性,而不是本质上许多其他局部度量。 研究人员将使用这些概念来识别网络中重要的关键组件,这些组件的删除会显着影响网络拓扑或动态的变化。 研究人员将制定数学上精确的计算问题,研究其属性,使用新颖的算法工具设计有效的算法,并实施所得算法以测试其准确性和效率。 两位研究者的互补背景,即计算机科学和计算生物学的组合优化(DasGupta)以及生物和社交网络的建模和分析(Albert),将使两位研究者成为本提案中跨学科应用的完美团队。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Why Did the Shape of Your Network Change? (On Detecting Network Anomalies via Non-local Curvatures)
  • DOI:
    10.1007/s00453-019-00665-7
  • 发表时间:
    2020-01-22
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    DasGupta, Bhaskar;Janardhanan, Mano Vikash;Yahyanejad, Farzane
  • 通讯作者:
    Yahyanejad, Farzane
A survey of some tensor analysis techniques for biological systems
生物系统一些张量分析技术综述
  • DOI:
    10.1007/s40484-019-0186-5
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Yahyanejad, Farzane;Albert, Réka;DasGupta, Bhaskar
  • 通讯作者:
    DasGupta, Bhaskar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bhaskar DasGupta其他文献

Opportunity Cost Algorithms for Combinatorial Auctions
组合拍卖的机会成本算法
Activity Theory : Legacies , Standpoints , and Hopes : A discussion of Andy Blunden ’ s An Interdisciplinary Theory of Activity
活动理论:遗产、立场和希望:对安迪·布伦登的跨学科活动理论的讨论
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Rumbaugh;James E. King;Michael J Beran;David A. Washburn;K. Gould;Nate Kornell;D. J. Scaturo;Brian D. Haig;R. Schvaneveldt;Benjamin K. Barton;Thomas A. Ulrich;Peter Robinson;Matthew J. Schuelke;Eric Anthony Day;Henry W. Chase;E. Carayannis;Timothy M. Flemming;Michael C. Mitchelmore;Paul White;Erin M. Brodhagen;M. Gettinger;E. Usher;David B. Morris;Janna Wardman;J. R. Nelson;R. Low;P. Jin;Betty K. Tuller;Noël Nguyen;Fons Wijnhoven;Gerhard Weber;C. Rigg;K. Trehan;Michael L. Jones;Aytac Gogus;N. Seel;Som Naidu;Danny R. Bedgood;Christina M. Steiner;Birgit Marte;Jürgen Heller;Dietrich Albert;A. Podolskiy;Lorna Uden;Andrew J. Martin;C. Balkenius;B. Johansson;Karen L. Hollis;David A. Cook;J. Bloomberg;Otmar Bock;R. Clariana;Simon Hooper;Amy B. Adcock;R. Van Eck;Chin;Chung;M. Burtsev;J. S. Nairne;Marco Vasconcelos;Josefa N. S. Pandeirada;Liu Yang;Jaime Carbonell;M. Dornisch;G. Manaster;Katie Davis;Marcia L. Conner;Dolores Fidishun;Mark Tennant;J. Gurlitt;J. Fletcher;S. Cerri;G. Veletsianos;P. Wickman;Jason D. Baker;M. Gläser;Soumaya Chaffar;C. Frasson;Dirk Hermans;Heleen Vandromme;Els Joos;Leily Ziglari;Benjamin D. Nye;Barry G. Silverman;E. Marchione;M. Salgado;Mimi Bong;Joaquin A. Anguera;Jin Bo;R. D. Seidler;K. Cennamo;V. Munde;C. Vlaskamp;W. Ruijssenaars;Bea Maes;H. Nakken;John Biggs;C. Tang;Vicki S. Napper;Carolyn E. Schwartz;Zhanna Reznikova;Ben Seymour;W. Yoshida;Ray Dolan;M. Speekenbrink;C. Breitenstein;Stefan Knecht;M. Guarini;Royal Skousen;Steve Chandler;Wendelin M. Küpers;U. Goswami;P. Blenkiron;A. Antonietti;Robert Samuel Matthews;Charlotte Hua Liu;Geoffrey Hall;Mireille Bétrancourt;Sandra Berney;Cathrine Hasse;Nigel Stepp;Martin Volker Butz;Giovanni Pezzulo;Filipo Studzinski Perotto;S. Cooray;A. Bakala;K. Purandare;Anusha Wijeratne;Jeff C. Marshall;Soh;Andrew Byrne;J. Campbell;Umar Syed;Klaus Nielsen;R. Feltman;Andrew J. Elliot;N. Entwistle;Bhaskar DasGupta;Derong Liu;Henning Fernau;Yu;Janusz Wojtusiak;Damian Grace;John M. Keller;Michael J. Ford;Nathalie Muller Mirza;Michael Jackson;Dana LaCourse Munteanu;Jason Arndt;Eva L. Baker;Fabio Alivernini;F. Tonneau;J. Jozefowiez;D. Sagi;Y. Adini;M. Tsodyks;Melissa L. Allen;Friedrich T. Sommer;Vivienne B. Carr;Kristina Wieland;Leslie C. Novosel;D. Deshler;Daniel T. Pollitt;Carrie Mark;Belinda B. Mitchell;K. Wolf;Notger G. Müller;M. Haselgrove;L. Gregory Appelbaum;Joseph A. Harris;Ulrike Halsband;E. Davelaar;Andrew Finch;W. Timothy Coombs;Annie Lang;O. Podolskiy;Stephen Billett;Joseph Psotka;Åsa Hammar;J. Worthen;R. Reed Hunt;Margaret MacDougall;É. Le Bourg;Tiago V. Maia
  • 通讯作者:
    Tiago V. Maia
Online real-time preemptive scheduling of jobs with deadlines
在线实时抢先调度有截止日期的作业

Bhaskar DasGupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bhaskar DasGupta', 18)}}的其他基金

ICES: Small: Collaborative Research: Dynamic Parking Assignment Games
ICES:小型:协作研究:动态停车分配游戏
  • 批准号:
    1216096
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
III: CCF: Medium: Collaborative Research: Combinatorial Analysis of Biological and Social Networks
III:CCF:媒介:协作研究:生物和社交网络的组合分析
  • 批准号:
    1160995
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Development: Algorithms and Software for Discovery of Non-sequential Protein Structure Similarities
合作研究:ABI 开发:用于发现非序列蛋白质结构相似性的算法和软件
  • 批准号:
    1062328
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Computational Problems in Bioinformatics Via Combinatorial and Geometric Techniques
职业:通过组合和几何技术解决生物信息学计算问题的有效算法
  • 批准号:
    0346973
  • 财政年份:
    2004
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Piecewise Linear Hybrid Systems
合作研究:分段线性混合系统
  • 批准号:
    0206795
  • 财政年份:
    2002
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Efficient Combinatorial Algorithms for Several Tiling, Packing and Covering Problems with Rectangles and Hyper-Rectangles
协作研究:针对矩形和超矩形的多个平铺、填充和覆盖问题的高效组合算法
  • 批准号:
    0208749
  • 财政年份:
    2002
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RUI: A Proposal for Research on Computing with Neural Models of Computation
RUI:神经计算模型计算研究提案
  • 批准号:
    0296041
  • 财政年份:
    2001
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RUI: A Proposal for Research on Computing with Neural Models of Computation
RUI:神经计算模型计算研究提案
  • 批准号:
    9800086
  • 财政年份:
    1998
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
  • 批准号:
    82304883
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
  • 批准号:
    82373082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
  • 批准号:
    82373304
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336769
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336768
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
  • 批准号:
    2311990
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了