RAPID: Evacuate or Not? Modeling the Decision Making of Individuals in Impending Disaster Areas

RAPID:疏散还是不疏散?

基本信息

项目摘要

A category 4 hurricane is approaching. Should a potentially affected individual follow the official orders and evacuate, or stay in place? Millions of individuals situated in vulnerable areas face this grave question as imminent disaster threatens. Many choose to leave, whereas some do not. Numerous interviews with such persons clearly convey their conviction in having made the right choice. This RAPID project will identify the variables that significantly influence the decision making of individuals in impending disaster areas, and it will contribute to the understanding of how the variables are utilized differently by different individuals. These insights will help to build new computational models of the individual's decision making under uncertainty, in extreme situations such as hurricanes and other natural disasters. The focus disasters will be the impacts of Hurricane Harvey on the Texas coast and Hurricane Irma on Florida and Georgia. Outcomes could augment evacuation efforts with actions on the ground that target those most likely to ignore official recommendations. Furthermore, such modeling will likely help relief-and-rescue efforts to better coordinate and provide faster relief with increased precision. Outcomes from this research will be integrated into the classroom instruction of courses taught by the PIs, which will provide students with exposure to how decision-making science can have real-world impact even under the most extreme circumstances.The technical approach begins with characterizing the affected classes of individuals of interest. Next, various types of data about them will be gathered. In particular, interviews of affected individuals before the impending disaster and after, as reported by various news agencies, relevant social media messages originating from disaster areas, government data on evacuees and their demographics, and other survey instruments will be used to build a comprehensive data set for analysis. These data will be sifted to infer the significant variables and how they interact in individual decision making. The analysis and data will be used to build empirically-informed decision making models, which will combine principled agent-based modeling with parametric human judgment and choice models. The exploratory nature of this research makes model evaluation particularly important. Performance of the various models on the data will be compared based on their fits and qualitative assessments. This research plan is expected to yield validated models of the decision-making processes of several affected individuals for government use and further study.
4 级飓风即将来临。可能受影响的个人应该遵循官方命令撤离,还是留在原地?由于灾难迫在眉睫,数百万生活在脆弱地区的人们面临着这一严重问题。许多人选择离开,而另一些人则没有。对这些人的多次采访清楚地表明他们坚信自己做出了正确的选择。该 RAPID 项目将识别对即将发生灾区的个人决策产生重大影响的变量,并将有助于了解不同个人如何不同地利用这些变量。这些见解将有助于在飓风和其他自然灾害等极端情况下的不确定性下建立个人决策的新计算模型。重点灾害将是飓风哈维对德克萨斯州海岸的影响以及飓风艾尔玛对佛罗里达州和佐治亚州的影响。结果可以通过针对那些最有可能忽视官方建议的人的实地行动来加强疏散工作。此外,这种建模可能有助于救援工作更好地协调并以更高的精度提供更快的救援。这项研究的成果将纳入 PI 教授的课程的课堂教学中,这将使学生了解决策科学如何在最极端的情况下对现实世界产生影响。技术方法首先描述受影响的利益相关群体。接下来,将收集有关他们的各种数据。特别是,将利用各新闻机构报道的灾前和灾后受影响个人的采访、来自灾区的相关社交媒体信息、有关撤离人员及其人口统计的政府数据以及其他调查工具来建立全面的数据设定进行分析。这些数据将被筛选以推断重要变量以及它们在个人决策中如何相互作用。分析和数据将用于构建基于经验的决策模型,该模型将基于原则的基于代理的建模与参数化的人类判断和选择模型相结合。这项研究的探索性使得模型评估尤为重要。将根据其拟合度和定性评估来比较各种模型在数据上的性能。该研究计划预计将产生几个受影响个人决策过程的经过验证的模型,供政府使用和进一步研究。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experience, risk, warnings, and demographics: Predictors of evacuation decisions in Hurricanes Harvey and Irma
经验、风险、警告和人口统计:飓风哈维和艾尔玛疏散决策的预测因素
Evacuate or Not? A POMDP Model of the Decision Making of Individuals in Hurricane Evacuation Zones
撤离还是不撤离?
  • DOI:
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Sankar;Prashant Doshi;Adam Goodie
  • 通讯作者:
    Adam Goodie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prashant Doshi其他文献

SEMEF : A Taxonomy-Based Discovery of Experts , Expertise and Collaboration Networks
SEMEF:基于分类的专家、专业知识和协作网络发现
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Cameron;I. Arpinar;Delroy Cameron;Major Advisor;Prashant Doshi;R. Woods;Maureen Grasso;Boanerges Aleman;Sheron L. Decker
  • 通讯作者:
    Sheron L. Decker
Toward Estimating Others' Transition Models Under Occlusion for Multi-Robot IRL
估计其他人在多机器人 IRL 遮挡下的转换模型
  • DOI:
    10.1007/s40747-021-00601-9
  • 发表时间:
    2015-07-25
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    K. Bogert;Prashant Doshi
  • 通讯作者:
    Prashant Doshi
Extending Semantic Matching for Application in Business Process Integration
扩展语义匹配在业务流程集成中的应用
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prashant Doshi;R. Goodwin;R. Akkiraju;Sascha Roeder
  • 通讯作者:
    Sascha Roeder
Scaling Expectation-Maximization for Inverse Reinforcement Learning to Multiple Robots under Occlusion
将反向强化学习的期望最大化扩展到遮挡下的多个机器人
  • DOI:
    10.1609/aaai.v33i01.33013951
  • 发表时间:
    2017-05-08
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    K. Bogert;Prashant Doshi
  • 通讯作者:
    Prashant Doshi
Approximating behavioral equivalence of models using top-k policy paths
使用 top-k 策略路径近似模型的行为等效性
  • DOI:
  • 发表时间:
    2011-05-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi;Yingke Chen;Prashant Doshi
  • 通讯作者:
    Prashant Doshi

Prashant Doshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prashant Doshi', 18)}}的其他基金

Collaborative Research: RI: Medium: RUI: Automated Decision Making for Open Multiagent Systems
协作研究:RI:中:RUI:开放多智能体系统的自动决策
  • 批准号:
    2312657
  • 财政年份:
    2023
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Standard Grant
RI:Small:Collaborative Research:Scalable Decentralized Planning for Open Multiagent Environments
RI:小型:协作研究:开放多代理环境的可扩展去中心化规划
  • 批准号:
    1910037
  • 财政年份:
    2019
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Standard Grant
RI:Small:Tractable Decision-Theoretic Planning Driven by Data
RI:小:数据驱动的易于处理的决策理论规划
  • 批准号:
    1815598
  • 财政年份:
    2018
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Standard Grant
NRI: FND: Robust Inverse Learning for Human-Robot Collaboration
NRI:FND:人机协作的鲁棒逆向学习
  • 批准号:
    1830421
  • 财政年份:
    2018
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Standard Grant
CNIC: U.S.-Netherlands Planning Visit for Cooperative Research on Intelligent Methods Under Uncertainty for Renewable Energy Driven Smart Grids
CNIC:美国-荷兰计划访问可再生能源驱动智能电网不确定性下的智能方法合作研究
  • 批准号:
    1444182
  • 财政年份:
    2015
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Standard Grant
EAGER: Decision-Theoretic and Scalable Algorithms for Computing Finite State Equilibrium
EAGER:用于计算有限状态平衡的决策理论和可扩展算法
  • 批准号:
    1346942
  • 财政年份:
    2013
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Standard Grant
CAREER: Scalable Algorithms for Individual Decision Making in Multiagent Settings
职业:多智能体环境中个人决策的可扩展算法
  • 批准号:
    0845036
  • 财政年份:
    2009
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Standard Grant

相似国自然基金

夏秋转换季南亚高压撤离青藏高原的物理机制及其对亚洲季风的影响
  • 批准号:
    41965004
  • 批准年份:
    2019
  • 资助金额:
    39 万元
  • 项目类别:
    地区科学基金项目
深水钻井隔水管悬挂撤离动力学特性与涡激振动机理研究
  • 批准号:
    51604235
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Proposal of IoT instruction system to evacuate diverse crowds from indoor facility in unstable situation
物联网指导系统提案,用于在不稳定情况下从室内设施疏散不同人群
  • 批准号:
    18K13973
  • 财政年份:
    2018
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Preferences and Decisions to Evacuate in the Face of Hurricane Harvey
RAPID:面对飓风哈维时疏散的偏好和决定
  • 批准号:
    1759178
  • 财政年份:
    2017
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Standard Grant
Development of a evacuation simulator for helping children evacuate from disasters in schools
开发疏散模拟器,帮助学校灾害中的孩子们疏散
  • 批准号:
    26350349
  • 财政年份:
    2014
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of warning and information to prompt to evacuate from Tsunami
制定警报和信息以促进海啸撤离
  • 批准号:
    24760406
  • 财政年份:
    2012
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of a navigation simulator for helping children evacuate from disasters in schools.
开发导航模拟器,帮助学校里的孩子们逃离灾难。
  • 批准号:
    23501190
  • 财政年份:
    2011
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了