Collaborative Research: Theory and Methods for Highly Multivariate Spatial Processes with Applications to Climate Data Science
合作研究:高度多元空间过程的理论和方法及其在气候数据科学中的应用
基本信息
- 批准号:1811384
- 负责人:
- 金额:$ 9.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geophysical, environmental and ecological datasets often include many variables observed over a set of irregular geographical locations. While spatial datasets are increasing in size, they are also increasing in complexity with many variables being simultaneously observed, recorded, modeled or derived. Current methods in spatial statistics are unable to cope with such highly multivariate datasets; this research addresses this gap in statistical science, aiming to establish a new framework for multivariate spatial models. The testbed for the new framework is in the field of climate data science. Understanding of the Earth system relies on coupled physical models that represent the dynamic evolution of the atmosphere, ocean, land use, rivers, glaciers and other processes. These models have led to vast amounts of climate model data that severely constrain storage resources. Moreover, statistical emulators are increasingly common and desirable alternatives to running complex physical models directly. Development and validation of compression and emulation algorithms require understanding and maintaining complex dependencies between physical variables, but current tools are univariate or pairwise-based. This research will provide statistical guidance for climate data science applications.This project focuses on a modeling framework for multivariate spatial processes, and relies on new theory incorporating graphical models in multiscale multivariate spatial process representations. Moreover, many multivariate datasets exhibit non-Gaussian behavior. A companion thrust of this work is in introducing and exploring empirical likelihood techniques for large multivariate spatial processes. Finally, the proposed models and estimation frameworks will be applied to a climate dataset from the Community Atmosphere Model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球物理、环境和生态数据集通常包括在一组不规则地理位置上观察到的许多变量。虽然空间数据集的规模不断增加,但其复杂性也不断增加,许多变量被同时观察、记录、建模或导出。当前的空间统计方法无法应对如此高度多元的数据集;这项研究解决了统计科学中的这一空白,旨在为多元空间模型建立一个新的框架。新框架的测试平台位于气候数据科学领域。对地球系统的理解依赖于耦合物理模型,这些模型代表了大气、海洋、土地利用、河流、冰川和其他过程的动态演化。这些模型产生了大量的气候模型数据,严重限制了存储资源。此外,统计模拟器越来越常见,也是直接运行复杂物理模型的理想替代方案。压缩和仿真算法的开发和验证需要理解和维护物理变量之间的复杂依赖性,但当前的工具是单变量或基于成对的。这项研究将为气候数据科学应用提供统计指导。该项目重点关注多元空间过程的建模框架,并依赖于在多尺度多元空间过程表示中结合图形模型的新理论。 此外,许多多元数据集表现出非高斯行为。 这项工作的另一个重点是引入和探索大型多元空间过程的经验似然技术。 最后,所提出的模型和估计框架将应用于社区大气模型的气候数据集。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid numerical approximation method for integrated covariance functions over irregular data regions
不规则数据区域积分协方差函数的快速数值逼近方法
- DOI:10.1002/sta4.275
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Simonson, Peter;Nychka, Douglas;Bandyopadhyay, Soutir
- 通讯作者:Bandyopadhyay, Soutir
A Model for Large Multivariate Spatial Datasets
大型多元空间数据集模型
- DOI:10.5705/ss.202017.0365
- 发表时间:2019
- 期刊:
- 影响因子:1.4
- 作者:Kleiber, William;Nychka, Douglas;Bandyopadhyay, Soutir
- 通讯作者:Bandyopadhyay, Soutir
Data driven robust estimation methods for fixed effects panel data models
- DOI:10.1080/00949655.2021.1996576
- 发表时间:2020-11
- 期刊:
- 影响因子:1.2
- 作者:B. H. Beyaztas;S. Bandyopadhyay
- 通讯作者:B. H. Beyaztas;S. Bandyopadhyay
Adapting conditional simulation using circulant embedding for irregularly spaced spatial data
使用循环嵌入对不规则间隔的空间数据进行条件模拟
- DOI:10.1002/sta4.446
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Bailey, Maggie D.;Bandyopadhyay, Soutir;Nychka, Douglas
- 通讯作者:Nychka, Douglas
Robust estimation for linear panel data models
- DOI:10.1002/sim.8732
- 发表时间:2020-05
- 期刊:
- 影响因子:2
- 作者:Beste Hamiye Beyaztas;S. Bandyopadhyay
- 通讯作者:Beste Hamiye Beyaztas;S. Bandyopadhyay
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soutir Bandyopadhyay其他文献
Soutir Bandyopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soutir Bandyopadhyay', 18)}}的其他基金
Workshop: Collaborative Strategies for Predicting and Measuring Uncertainty in Rare Occurrences in Civil and Environmental Systems; Golden, Colorado; 6-8 November 2024
研讨会:预测和测量民用和环境系统中罕见事件的不确定性的协作策略;
- 批准号:
2400107 - 财政年份:2024
- 资助金额:
$ 9.45万 - 项目类别:
Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 9.45万 - 项目类别:
Standard Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
- 批准号:
2210840 - 财政年份:2022
- 资助金额:
$ 9.45万 - 项目类别:
Continuing Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
- 批准号:
1854181 - 财政年份:2018
- 资助金额:
$ 9.45万 - 项目类别:
Standard Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
- 批准号:
1406622 - 财政年份:2014
- 资助金额:
$ 9.45万 - 项目类别:
Standard Grant
相似国自然基金
基于无人机遥感成像及分布式数据协作的光伏发电预测理论研究
- 批准号:51907151
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
工业云环境下的制造服务协作机理与可靠性分析理论研究
- 批准号:51875030
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
面向协作式云计算的数据完整性验证理论与方法研究
- 批准号:61702379
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
导频污染下大规模分布式MIMO无线传输理论与技术研究
- 批准号:61501113
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
多点协作多用户无线通信信道互易性错误条件下的通信方法研究
- 批准号:61101092
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 9.45万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 9.45万 - 项目类别:
Continuing Grant
Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
- 批准号:
2419026 - 财政年份:2024
- 资助金额:
$ 9.45万 - 项目类别:
Continuing Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311058 - 财政年份:2023
- 资助金额:
$ 9.45万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324396 - 财政年份:2023
- 资助金额:
$ 9.45万 - 项目类别:
Standard Grant