Computations in Stable and Unstable Equivariant Chromatic Homotopy

稳定和不稳定等变色同伦的计算

基本信息

  • 批准号:
    1811189
  • 负责人:
  • 金额:
    $ 41.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The project addresses directly the heart of algebraic topology: computing invariants like numbers, groups, and rings to understand spaces. The goal of algebraic topology is to systematically build a connection between algebraic objects like numbers and geometric objects like spaces. This connection allows a two-way flow of information, with algebraic invariants distinguishing spaces and topological methods informing algebraic problems. Starting from foundational work of Quillen, algebraic and algebraic geometry data like formal groups gives rise to new invariants for spaces with striking properties. This project combines this classical thread with much more recent developments coming from equivariant algebraic topology. "Equivariant algebraic topology" remembers a collection of symmetries inherent in a space as part of the data, systematically grouping spaces with the same symmetries, and the numbers and invariants produced must reflect this. This extra structure provides more nuanced computations, giving more information about how the classically described invariants change under symmetries. Equivariant algebraic topology has experience a renaissance recently dues to the solution by the PI, Hopkins, and Ravenel to the Kervaire Invariant One problem, one of the oldest outstanding problems in algebraic topology. The solution introduced a host of new constructions and techniques that have striking ramifications in classical and equivariant algebraic topology, and the problems in this project focus on unpacking some of these new constructions and describing what they mean for algebraic topology in general. Many of the projects focus on diversity in STEM. The PI is currently developing tools to help others build a conference series for graduate students and develop their own conferences for younger researchers to attract them to a field. The PI is also in discussions with an HBCU about building more direct connections between their students and the PI's institutions, starting with electronic seminars to introduce students to active researchers in algebraic topology. The goal of these collaborations is to have more students from underrepresented groups enter and succeed in graduate programs in algebraic topology. Finally, the PI has developed and continues to refine a First Year seminar on "Women in Math." The seminar connects students with female mathematicians, allowing the students the opportunity to hear about their research and experience.Modern stable homotopy theory heavily utilizes the fact that the stable homotopy category behaves like a derived category of modules. The ground ring here is the sphere spectrum, and computing its homotopy groups is one of the overarching themes in the subject. The problem can be approached by first looking p-locally, and we can pass to the p-local stable homotopy category. Here algebraic geometry provides a further refinement via the theory of formal groups, a cornerstone of algebraic topology. The current approach to understanding monochromatic homotopy is via certain homotopy fixed points computations. Computing the homotopy groups of fixed points and homotopy fixed points is very difficult in general. One of the most exciting new tools developed to solve the Kervaire problem is a general slice filtration, a method which directly computes homotopy groups of fixed points. For Real Landweber exact theories, this is an extremely efficient tool. For larger groups, computations are still tractable but much more mysterious. In all cases, many of the conceptual tools from non-equivariant homotopy are not available. Many of the techniques developed for stable equivariant homotopy can also be applied unstably. This gives a natural and geometric notion of "even" which refines the ordinary one non-equivariantly and which encompasses spaces related to Real bordism and its norms. The PI expects to see a close connection between unstable even spaces, various orientations by norms of Real bordism, and Mackey functor objects in algebraic geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目直接解决了代数拓扑的核心问题:计算数字、群和环等不变量来理解空间。代数拓扑的目标是系统地建立代数对象(如数字)和几何对象(如空间)之间的联系。这种连接允许信息的双向流动,用代数不变量来区分空间,用拓扑方法来解决代数问题。从 Quillen 的基础工作开始,代数和代数几何数据(如形式群)为具有惊人属性的空间带来了新的不变量。该项目将这一经典思路与来自等变代数拓扑的最新发展结合起来。 “等变代数拓扑”将空间中固有的对称性集合作为数据的一部分,系统地对具有相同对称性的空间进行分组,并且产生的数字和不变量必须反映这一点。这种额外的结构提供了更细致的计算,提供了有关经典描述的不变量在对称性下如何变化的更多信息。由于 PI、Hopkins 和 Ravenel 对 Kervaire 不变一问题(代数拓扑中最古老的突出问题之一)的解决,等变代数拓扑最近经历了复兴。该解决方案引入了许多新的结构和技术,这些结构和技术在经典和等变代数拓扑中具有显着的影响,并且该项目中的问题集中于解开其中一些新结构并描述它们对代数拓扑的一般意义。许多项目都注重 STEM 的多样性。 PI 目前正在开发工具,帮助其他人为研究生建立会议系列,并为年轻研究人员开发自己的会议,以吸引他们进入某个领域。 PI 还与 HBCU 讨论在学生和 PI 机构之间建立更直接的联系,首先通过电子研讨会向学生介绍代数拓扑领域的活跃研究人员。这些合作的目标是让更多来自代表性不足群体的学生进入代数拓扑研究生课程并取得成功。最后,PI 制定并继续完善了“数学领域的女性”第一年研讨会。 该研讨会将学生与女性数学家联系起来,让学生有机会了解她们的研究和经验。 现代稳定同伦理论大量利用了稳定同伦范畴表现得像模的派生范畴这一事实。这里的底环是球面谱,计算其同伦群是该主题的首要主题之一。该问题可以通过首先查看 p-局部来解决,然后我们可以传递到 p-局部稳定同伦类别。在这里,代数几何通过形式群理论(代数拓扑的基石)提供了进一步的细化。 当前理解单色同伦的方法是通过某些同伦不动点计算。一般来说,计算不动点的同伦群和同伦不动点是非常困难的。为解决 Kervaire 问题而开发的最令人兴奋的新工具之一是通用切片过滤,这是一种直接计算不动点同伦群的方法。对于 Real Landweber 精确理论来说,这是一个极其有效的工具。对于较大的群体,计算仍然容易处理,但更加神秘。在所有情况下,许多非等变同伦的概念工具都不可用。许多为稳定等变同伦而开发的技术也可以不稳定地应用。这给出了一种自然和几何的“均匀”概念,它非等价地细化了普通的概念,并且包含了与真实边界及其规范相关的空间。 PI 期望看到不稳定均匀空间、实数几何规范的各种方向以及代数几何中的 Mackey 函子对象之间的密切联系。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和能力进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equivariant stable categories for incomplete systems of transfers
不完全转移系统的等变稳定类别
Detecting exotic spheres in low dimensions using coker J
  • DOI:
    10.1112/jlms.12301
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Behrens;Michael Hill;Michael J. Hopkins;M. Mahowald
  • 通讯作者:
    Mark Behrens;Michael Hill;Michael J. Hopkins;M. Mahowald
An equivariant tensor product on Mackey functors
Mackey 函子上的等变张量积
  • DOI:
    10.1016/j.jpaa.2019.04.001
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Hill, Michael A.;Mazur, Kristen
  • 通讯作者:
    Mazur, Kristen
Bi-incomplete Tambara functors
双不完全 Tambara 函子
Free Incomplete Tambara Functors are Almost Never Flat
自由不完全 Tambara 函子几乎从不平坦
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Hill其他文献

A comparative analysis of informal networks among older people in Eastern and Western European states
东欧和西欧国家老年人非正式网络的比较分析
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laura Banks;P. Haynes;Michael Hill
  • 通讯作者:
    Michael Hill
Changes in Communal Provision for Adult Social Care, 1991-2001
1991-2001 年成人社会护理公共供给的变化
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laura Banks;P. Haynes;S. Balloch;Michael Hill
  • 通讯作者:
    Michael Hill
Comparative IgE responses to extracts of five species of house dust mite, using Western blotting
使用蛋白质印迹法比较对五种屋尘螨提取物的 IgE 反应
Comparación de la prueba de tamizaje PlusoptiX con la retinoscopia bajo cicloplejia para la detección de defectos refractivos significativos
PlusoptiX 与视网膜镜检查和显着屈光缺陷检测的比较
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Frazier;Michael Hill
  • 通讯作者:
    Michael Hill
Prescription of Medroxyprogesterone Acetate to a Patient with Pedophilia, Resulting in Cushing’s Syndrome and Adrenal Insufficiency
给恋童癖患者开醋酸甲羟孕酮,导致库欣综合征和肾上腺功能不全

Michael Hill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Hill', 18)}}的其他基金

Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Standard Grant
Molecular s-block Assemblies for Redox-active Bond Activation and Catalysis: Repurposing the s-block as 3d-elements
用于氧化还原活性键活化和催化的分子 s 块组装:将 s 块重新用作 3d 元素
  • 批准号:
    EP/X01181X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Research Grant
Equivariant Approaches to Chromatic Homotopy
色同伦的等变方法
  • 批准号:
    2105019
  • 财政年份:
    2021
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
  • 批准号:
    2052702
  • 财政年份:
    2021
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Standard Grant
Nucleophilic Alkaline Earth Boryls: From Conception and Theory to Application
亲核碱土硼基化合物:从概念、理论到应用
  • 批准号:
    EP/R020752/1
  • 财政年份:
    2018
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Research Grant
Augmentation of Alkaline Earth Reactivity: An FLP Analogy
碱土反应性的增强:FLP 类比
  • 批准号:
    EP/N014456/1
  • 财政年份:
    2016
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Research Grant
Equivariant Derived Algebraic Geometry
等变导出的代数几何
  • 批准号:
    1509652
  • 财政年份:
    2015
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Continuing Grant
Computations in Equivariant Homotopy and Algebraic K-Theory
等变同伦和代数 K 理论中的计算
  • 批准号:
    1207774
  • 财政年份:
    2012
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Standard Grant
Scalable, low-cost organic photovoltaic devices
可扩展、低成本的有机光伏器件
  • 批准号:
    EP/J50001X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Research Grant
Group 2: Elements of 21st Century Catalysis
第 2 组:21 世纪催化要素
  • 批准号:
    EP/I014519/1
  • 财政年份:
    2011
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Research Grant

相似国自然基金

利用一种新型高效计算方法研究等离子体尾波加速中的束流不稳定性
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
低温液体填充盲支管的不稳定过程研究
  • 批准号:
    11602014
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
炎症和微钙化PET/CT联合显像用于动脉粥样硬化斑块不稳定性的评估
  • 批准号:
    81671735
  • 批准年份:
    2016
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
多相流自由界面不稳定性的计算流体力学研究
  • 批准号:
    11202020
  • 批准年份:
    2012
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
用于激波管界面不稳定性中密度场三维分辨诊断的激光差分干涉层析技术
  • 批准号:
    11202194
  • 批准年份:
    2012
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Moduli spaces of stable and unstable maps to curves and surfaces
稳定和不稳定的模空间映射到曲线和曲面
  • 批准号:
    2426278
  • 财政年份:
    2020
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Studentship
Stable and unstable almost-periodic problems
稳定和不稳定的近周期问题
  • 批准号:
    532567-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Postdoctoral Fellowships
Stable and unstable almost-periodic problems
稳定和不稳定的近周期问题
  • 批准号:
    532567-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Postdoctoral Fellowships
Stable and unstable almost-periodic problems
稳定和不稳定的近周期问题
  • 批准号:
    532567-2019
  • 财政年份:
    2018
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Postdoctoral Fellowships
A study of the plaque-modifying actions of colchicine in stable and unstable atherosclerosis: from mouse models to clinical imaging.
秋水仙碱对稳定和不稳定动脉粥样硬化斑块修饰作用的研究:从小鼠模型到临床成像。
  • 批准号:
    nhmrc : 1127159
  • 财政年份:
    2017
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Project Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了