Collaborative Research: Carrier dispersion and Nontrivial Topological Phases in Ultra-Low Bandgap Metamorphic InAsSb Ordered Alloys
合作研究:超低带隙变质 InAsSb 有序合金中的载流子色散和非平凡拓扑相
基本信息
- 批准号:1809708
- 负责人:
- 金额:$ 28.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Semiconductors suitable for the development of infrared opto-electronic devices attract attention of physicists and engineers for many years. Metamorphic molecular beam epitaxy, a novel technology for material development, produces high quality compounds with precise control of their composition (indium, arsenic, aluminum and antimony) over a wide range of atomic concentrations. This ability allows deep studies of the "quantum" properties of important narrow-band semiconductors that are protected against material imperfections. These properties may have profound implication for the performance of a variety of devices including quantum computers. In this project the interdisciplinary research team from Stony Brook University and Georgia Institute of Technology plans to use novel materials for experimental demonstration of intriguing features of quantum physics. The efforts combine development of new materials and study of their physical properties and energy spectra by a variety of advanced experimental techniques. The project also provides for synergetic training of graduate students in physics, material science, and engineering, creating research opportunities for undergraduate students. The K-12 education component aims at cultivating an early-stage awareness of using new materials and technologies to improve the device performance without compromising the quality of human life.This project is to carry out epitaxial growth of high-quality indium arsenide antimonide (InAsSb) alloys with controllable nanoscale ordering and to investigate the manifestations of the new topologically nontrivial phases in these materials. The material growth is based on a recently developed virtual substrate approach, which lifts the constraint from the substrate lattice constant. The physical properties of the InAsSb ordered alloys can then be controlled to an exceptional degree, via varying the lattice constant, the strain, the alloy composition, and the composition modulation period. With these new materials, the research team intends to answer the following fundamental questions. (1) Can nontrivial topological phases be realized and observed in metamorphic InAsSb alloys with nanoscale ordering and tunable bandgap? (2) Can the InAsSb ordered alloys be a new platform for demonstration of Majorana zero mode? These topics are of great fundamental and technological interest, particularly for the solid-state realization of topological quantum computing. The technical approaches of the project include band structure calculation, advanced epitaxial growth, and cutting-edge characterization methods. The latter features transmission electron microscopy, high-resolution x-ray diffraction, reciprocal space mapping, infrared spectroscopy in high magnetic fields, and angle-resolved photoemission spectroscopy. Graduate and undergraduate students participating in the project have unique opportunities to master these methods and engage in all stages of the material development process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
适合开发红外光电设备的半导体吸引了多年的物理学家和工程师的注意。变质分子束外延是一种新型的材料开发技术,可在广泛的原子浓度上精确控制其组成(鉴别,砷,铝和锑)的高质量化合物。这种能力允许对保护不受材料缺陷的重要窄带半导体的“量子”特性进行深入研究。这些属性可能对包括量子计算机在内的各种设备的性能具有深远的影响。在这个项目中,斯托尼·布鲁克大学和佐治亚理工学院的跨学科研究团队计划使用新颖的材料来实验量子物理学的有趣特征。努力通过各种先进的实验技术结合了新材料的开发以及对其物理特性和能量光谱的研究。该项目还提供了对物理,材料科学和工程研究生的协同培训,为本科生创造了研究机会。 K-12教育组成部分旨在培养早期的意识,即使用新材料和技术来改善设备性能,而不必损害人类生活的质量。该项目是通过可控制的纳米级订购和调查这些材料的可控量化材料的高质量依赖性依从氨基酯(INASSB)合金的外在增长。材料生长基于最近开发的虚拟底物方法,该方法将约束从底物晶格常数中提升。然后,可以通过改变晶格常数,应变,合金组成和组成调制周期,以特殊程度控制INASSB的物理性质。借助这些新材料,研究小组打算回答以下基本问题。 (1)在具有纳米级有序和可调带隙的变质INASSB合金中是否可以实现并观察到非平凡的拓扑阶段? (2)INASSB订购的合金可以成为演示Majorana零模式的新平台吗?这些主题具有极大的基本和技术兴趣,特别是对于拓扑量子计算的固态实现。该项目的技术方法包括带结构计算,高级外延生长和尖端特征方法。后者具有透射电子显微镜,高分辨率X射线衍射,相互空间映射,高磁场中的红外光谱以及角度分辨的光发射光谱。参加该项目的研究生和本科生有独特的机会来掌握这些方法并参与材料开发过程的各个阶段。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Suchalkin其他文献
Microcavity enhanced Stark optical modulator for long-wave infrared
- DOI:
10.1016/j.ssc.2022.115010 - 发表时间:
2022-12-15 - 期刊:
- 影响因子:
- 作者:
Sergey Suchalkin;Boris Laykhtman;G. Belenky;Stefan P. Svensson;Gela Kipshidze;Jhair Alzamora - 通讯作者:
Jhair Alzamora
Sergey Suchalkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
MoOxCy载体上负载金属的分散与催化机制的理论研究
- 批准号:22302109
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
精准穿透肿瘤干细胞对抗肿瘤转移的适配体功能载体的构建及作用机制研究
- 批准号:22377101
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
室温钠硫电池用氮氧化钛载体的d带中心调控与电催化机理研究
- 批准号:52307239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
溶质载体SLC9C1参与精子获能调控的结构和功能机制研究
- 批准号:32371292
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
载体再生型固定化脂肪酶在废油制备生物柴中的循环应用研究
- 批准号:22369014
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
FASEB SRC: The Trace Elements in Biology and Medicine Conference
FASEB SRC:生物学和医学中的微量元素会议
- 批准号:
10469205 - 财政年份:2022
- 资助金额:
$ 28.79万 - 项目类别:
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114312 - 财政年份:2021
- 资助金额:
$ 28.79万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114304 - 财政年份:2021
- 资助金额:
$ 28.79万 - 项目类别:
Standard Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
- 批准号:
2015946 - 财政年份:2020
- 资助金额:
$ 28.79万 - 项目类别:
Standard Grant
Role of Host Protein Kinase C in Cryptosporidiosis
宿主蛋白激酶 C 在隐孢子虫病中的作用
- 批准号:
10670098 - 财政年份:2020
- 资助金额:
$ 28.79万 - 项目类别: