Superconductor-(Metal)-Insulator Transitions: Understanding the Emergence of Anomalous Metallic States

超导体-(金属)-绝缘体转变:了解反常金属态的出现

基本信息

  • 批准号:
    1808385
  • 负责人:
  • 金额:
    $ 64.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Non-Technical Abstract:Conductivity of metals is determined by impurity scattering, and is given by a simple expression known as Drude Formula. As explained by Bardeen-Cooper-Schriefer in their celebrated "BCS" theory, at low temperatures electrons in such metals may also form an exotic state known as a condensate of bosonic Cooper pairs. However, despite the vast experimental data supporting the above "standard paradigm", anomalies in experimental data, particularly in the limit of two-dimensions (2D), have been accumulating. It became clear that there exists a new class of metallic states at low temperatures, where the electronic properties cannot be understood on the basis of existing theories. The project focuses on the investigations of novel metallic states that emerge at low temperature, primarily in proximity to superconducting states. The project includes training of graduate students, and a post-doctoral scholar. The project will also seek to continue this tradition by actively recruiting women graduate students and post-docs to the group, while also maintaining strong international collaborations.Technical Abstract:A metallic state is defined as a state in which the conductivity remains finite as the temperature tends to zero. There is an extraordinarily successful "Fermi liquid theory" of clean 3D metals with long mean free path and relatively weak interactions. In this theory fermionic excitations (quasiparticles) have a finite density of states at the Fermi level, while bosonic excitations (e.g. zero sound) have lesser role at low temperatures, since their contribution to the current is negligible due to their vanishing density of states. The low-T conductivity of relatively pure 3D metals is determined by impurity scattering, and is given by the Drude formula. Another well-established paradigm is the BCS theory of superconductivity, which is based on the idea that under some circumstances electron attraction can dominate the electron repulsion so that at low temperatures electrons form a condensate of bosonic Cooper pairs. It is this condensate that carries the supercurrent. As parameters controlling the electronic environment change, the system may exhibit a superconductor to metal transition, which at zero temperature is a quantum transition. The conventional theory of metals also predict that as the system approaches the BCS superconducting state from the metallic side, its properties in no way reflect the proximity of the superconducting phase, and the conductivity of the system is controlled by the fermionic excitations everywhere in the metallic phase. Despite the vast experimental data supporting the above "standard paradigm", especially on bulk superconductors, anomalies in experimental data, particularly in the limit of two dimensions, have been accumulating. It became clear that there exists a new class of metallic states in the zero-temperature limit, where the electronic properties cannot remotely be understood on the basis of Fermi liquid and Drude theories. This observation by itself is astonishing because it points to a new paradigm for the electronic properties of metals. Exploring the properties of such anomalous metallic states is the focus of this project. This will be done by fabricating a variety of thin-films superconductors, and study their transport properties. While in the past such studies focused solely on longitudinal conductivity measurements, this project will emphasize transverse transport, and will include thermal transport, which can further shed light on the nature of the metallic state. The application of electromagnetic perturbations such as magnetic and RF electric fields will be used to tune through these metallic states, or in some circumstances promote them. The project trains one or two graduate students, one post-doctoral scholar. The project will also seek to continue this tradition by actively recruiting women graduate students and post-docs to the group, while also maintaining strong international collaborations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:金属的电导率取决于杂质散射,并由称为Drude公式的简单表达式给出。正如Bardeen-Cooper-Schriefer在其著名的“ BCS”理论中所解释的那样,在这种金属中的低温电子中,电子也可能形成一种外来的状态,称为Bosonic Cooper Pairs的冷凝物。但是,尽管有大量的实验数据支持上述“标准范式”,但实验数据中的异常情况,尤其是在二维(2D)的限制中,已经积累了。很明显,在低温下存在一类新的金属状态,在这些金属状态下,基于现有理论无法理解电子特性。该项目的重点是对低温下出现的新金属状态的研究,主要是靠近超导状态。该项目包括对研究生的培训和博士后学者。该项目还将寻求通过积极招募女性研究生和邮政为小组的妇女研究生,同时还要维持强大的国际合作。技术摘要:金属状态定义为电导率仍然有限的状态,因为温度趋于零。有一个非常成功的“费米液体液体理论”的清洁3D金属具有较长的自由路径和相对较弱的相互作用。在该理论中,费米子激发(准粒子)在费米水平上具有有限的状态密度,而在低温下,骨气激发(例如,零声音)的作用较小,因为由于它们的消失状态,它们对电流的贡献可忽略不计。相对纯的3D金属的低T电导率取决于杂质散射,并由Drude公式给出。另一个完善的范式是BCS超导性理论,它基于这样的观念:在某些情况下,电子吸引力可以主导电子排斥,因此在低温下电子在低温上形成骨库珀对的冷凝物。正是这种冷凝物带有超流。随着控制电子环境变化的参数,系统可能会表现出对金属过渡的超导体,该电源在零温度下是量子过渡。金属的常规理论还预测,随着系统接近金属侧BCS超导状态,其特性绝不反映超导阶段的接近性,并且系统的电导率受到金属阶段各地的典型激励的控制。尽管有大量的实验数据支持上述“标准范式”,尤其是在散装超导体方面,但实验数据中的异常,尤其是在二维极限的情况下,仍在积累。 很明显,在零温度的极限中存在一类新的金属状态,在零温度的极限中,无法根据费米液体和drude理论对电子性质进行远程理解。这种观察本身令人惊讶,因为它指出了金属电子特性的新范式。探索这种异常金属状态的特性是该项目的重点。这将通过制造各种薄膜超导体并研究其运输特性来完成。过去,这种研究仅集中在纵向电导率测量上,但该项目将强调横向运输,并包括热运输,这可以进一步阐明金属状态的性质。电磁扰动(例如磁性和RF电场)的应用将用于通过这些金属状态进行调整,或者在某些情况下促进它们。该项目训练一两个研究生,一名博士后学者。该项目还将寻求通过积极招募女性研究生和邮政为小组的妇女研究生,同时还保持着强大的国际合作。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子评估来获得支持的,并具有更广泛的影响。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Universal Bound to the Amplitude of the Vortex Nernst Signal in Superconductors
超导体中涡旋能斯特信号振幅的普遍束缚
  • DOI:
    10.1103/physrevlett.126.077001
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Rischau, Carl Willem;Li, Yuke;Fauqué, Benoît;Inoue, Hisashi;Kim, Minu;Bell, Christopher;Hwang, Harold Y.;Kapitulnik, Aharon;Behnia, Kamran
  • 通讯作者:
    Behnia, Kamran
Robust anomalous metallic states and vestiges of self-duality in two-dimensional granular In-InOx composites
  • DOI:
    10.1038/s41535-021-00329-2
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Xinyang Zhang;B. Hen;A. Palevski;A. Kapitulnik
  • 通讯作者:
    Xinyang Zhang;B. Hen;A. Palevski;A. Kapitulnik
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aharon Kapitulnik其他文献

ワイル電子系における軌道由来の負の磁気抵抗とプレーナーホール 効果
外尔电子系统中轨道衍生的负磁阻和平面霍尔效应
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伏屋雄紀,勝野弘康,Kamran Behnia;Aharon Kapitulnik;浅香雄哉,菊池樹,伏屋雄紀;河村省吾,伏屋雄紀;竹端寛治,今中康貴,山田暉馨 , 伏屋雄紀 ,木下雄斗 ,徳永将史;山田暉馨,伏屋雄紀
  • 通讯作者:
    山田暉馨,伏屋雄紀
ナノスケールのチューリング・パターン:単層ビスマスの形態形成
纳米级图灵图案:单层铋的形态发生
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伏屋雄紀,勝野弘康,Kamran Behnia;Aharon Kapitulnik
  • 通讯作者:
    Aharon Kapitulnik
Superconductivity and quantum criticality in quasicrystals
准晶体中的超导性和量子临界性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伏屋雄紀,勝野弘康,Kamran Behnia;Aharon Kapitulnik;関 和彦;Hiraku Nakajima;N.K. Sato
  • 通讯作者:
    N.K. Sato
BiSb 系におけるトポロジカルヘテロ構造の表面状態
BiSb体系拓扑异质结构的表面态
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伏屋雄紀,勝野弘康,Kamran Behnia;Aharon Kapitulnik;浅香雄哉,菊池樹,伏屋雄紀
  • 通讯作者:
    浅香雄哉,菊池樹,伏屋雄紀
量子極限におけるディラック電子の磁化
狄拉克电子在量子极限下的磁化
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伏屋雄紀,勝野弘康,Kamran Behnia;Aharon Kapitulnik;浅香雄哉,菊池樹,伏屋雄紀;河村省吾,伏屋雄紀
  • 通讯作者:
    河村省吾,伏屋雄紀

Aharon Kapitulnik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aharon Kapitulnik', 18)}}的其他基金

Superconductor-(Metal)-Insulator Transitions: Understanding the Emergence of Metallic States, A Continuation Proposal
超导体-(金属)-绝缘体转变:了解金属态的出现,延续提案
  • 批准号:
    2307132
  • 财政年份:
    2023
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: Axion Resonant InterAction Detection Experiment (ARIADNE) - a Renewal Proposal
合作研究:轴子共振相互作用检测实验(ARIADNE)——更新提案
  • 批准号:
    2110944
  • 财政年份:
    2021
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: Axion Resonant InterAction DetectioN Experiment (ARIADNE) - a Continuation Proposal
合作研究:轴子共振相互作用检测实验(ARIADNE)——一项延续提案
  • 批准号:
    1806395
  • 财政年份:
    2018
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: Axion Resonant InterAction DetectioN Experiment (ARIADNE)
合作研究:轴子共振相互作用检测实验(ARIADNE)
  • 批准号:
    1510484
  • 财政年份:
    2016
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Standard Grant
Search for Deviations from Newtonian Gravity at Micron Scale (A Continuation Proposal)
寻找微米尺度上牛顿引力的偏差(延续提案)
  • 批准号:
    1205236
  • 财政年份:
    2012
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Continuing Grant
Exploring Quantum Effects in Two-Dimensional Multilayered Superconductors
探索二维多层超导体中的量子效应
  • 批准号:
    1104547
  • 财政年份:
    2011
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Standard Grant
Search for Deviations from Newtonian Gravity at Micron Scale (a continuation proposal)
寻找微米尺度牛顿引力的偏差(延续提案)
  • 批准号:
    0854678
  • 财政年份:
    2009
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Continuing Grant
Superconductivity and Proximity Effect in Two-Dimensional Films and Multilayers
二维薄膜和多层膜中的超导性和邻近效应
  • 批准号:
    0803958
  • 财政年份:
    2008
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Continuing Grant
Search for Gravity-Like Forces at Sub-100 microns Scale
寻找 100 微米以下尺度的类重力
  • 批准号:
    0554170
  • 财政年份:
    2006
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Continuing Grant
Superconductors, Insulators, Metals and Quantum Phase Transitions in Two-Dimensional Films
二维薄膜中的超导体、绝缘体、金属和量子相变
  • 批准号:
    0406339
  • 财政年份:
    2004
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Continuing Grant

相似国自然基金

二元金属原子团簇协同催化多硫化锂转化机制研究
  • 批准号:
    22379001
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于π-d杂化策略的铁磁金属颗粒膜界面磁耦合及反常霍尔效应研究
  • 批准号:
    12304134
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高风险微塑料和重金属对贝类海产品的复合毒效机制研究
  • 批准号:
    32302228
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钢-镍异种金属激光焊接过渡层组织结构精准调控机理及高温性能
  • 批准号:
    52305390
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双位点金属氧化物催化剂原子级界面调控及锌-空气电池性能研究
  • 批准号:
    22305010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Superconductor-(Metal)-Insulator Transitions: Understanding the Emergence of Metallic States, A Continuation Proposal
超导体-(金属)-绝缘体转变:了解金属态的出现,延续提案
  • 批准号:
    2307132
  • 财政年份:
    2023
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Continuing Grant
Theory of spin and heat transport in topological insulator/superconductor junctions
拓扑绝缘体/超导体结中的自旋和热传输理论
  • 批准号:
    15H03525
  • 财政年份:
    2015
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Superconductor-Insulator-Normal Metal Tunnel Junction Detectors for Large Submillimeter Arrays
大型亚毫米阵列超导-绝缘体-普通金属隧道结探测器的开发
  • 批准号:
    0505379
  • 财政年份:
    2005
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Continuing grant
Development of Multifunctional Organic Materials (Superconductors, Spin Liquids, Novel Phase Transition Systems, etc)
多功能有机材料(超导体、自旋液体、新型相变系统等)的开发
  • 批准号:
    15205019
  • 财政年份:
    2003
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Metal -insulator -superconductor phase separation in the highly correlated organic conductors near the Mott transition.
莫特转变附近高度相关的有机导体中的金属-绝缘体-超导体相分离。
  • 批准号:
    15540329
  • 财政年份:
    2003
  • 资助金额:
    $ 64.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了