Instrument Development: 4-D Super Time Resolved Microscopy (4-D STReM) for Understanding Dynamics in Porous Materials
仪器开发:用于了解多孔材料动力学的 4-D 超级时间分辨显微镜 (4-D STReM)
基本信息
- 批准号:1808382
- 负责人:
- 金额:$ 46.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the Chemical Measurement and Imaging Program in the Division of Chemistry, Professor Landes at Rice University is working to understand and optimize processes that occur within porous materials. The goal of the project is to develop a new type of microscope with unprecedented space and time resolution. The Landes group's new microscope allows the study of how rare events impact the efficiency of porous materials that are important for catalysis, separations science, corrosion, and biology. It has been established that it is possible to manipulate light as it interacts with molecules and proteins. For example, Professor Landes has already shown that by shaping light's phase, events faster than the camera frame rate can be imaged. By incorporating new mathematical and physical tools, the current project will result in a new instrument to image and track fast dynamics in porous materials with optimized 3-D space and time resolution. The interdisciplinary nature of this research effort provides participating students with a unique experience at the interface of spectroscopy and materials science, as well as image processing and modern information theory, and continues the strong history of cross-disciplinary activities in science and technology at Rice University. This grant supports Professor Landes to provide training opportunities to high school teachers to incorporate cutting edge science into their course materials, as well as her new effort to create a summer scientific programming course. Recently, a new microscopy technique called super temporal-resolved microscopy (STREM) was developed. Proof-of-concept measurements showed that STREM can improve the time resolution of traditional wide-field cameras by at least twenty times. This development, if combined with recent advances in 3-D imaging methods and signal processing, represents an opportunity to resolve the multiscale, nonlinear dynamics that drive a range of interfacial materials properties. Thus, the current project's objective is to develop and optimize 4-D STREM, a chemical imaging method for quantifying the nonlinear dynamics and structures in porous materials. It is hypothesized that better 3-D sub-diffraction spatial information, coupled with improved time resolution and signal processing algorithms, reveals heterogeneous mass transport, chemical, and biological mechanisms occurring at porous interfaces. The project will involve innovations in both hardware and software to improve the temporal and 2-D spatial resolution. Additionally, a new algorithm is to be developed to track in 3-D. Finally, the new microscope is to be used to acquire and curate a machine learning library capable of differentiating among common analyte, sample, and instrument conditions. A new instrument optimized for characterizing the multiscalar physics and chemistry that underlie separations in porous media, by improving both spatial and temporal resolution is obtained in this project. Further, the project will result in new algorithms to extract information from large 3-D data sets. In terms of applications, a more detailed description of mass transport in pores and channels is a step towards predictive separations, which are currently optimized empirically, amounting to billions of dollars each year for industry, government, and academic purposes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学测量和成像项目的支持下,莱斯大学的兰德斯教授正在努力了解和优化多孔材料中发生的过程。该项目的目标是开发一种具有前所未有的空间和时间分辨率的新型显微镜。兰德斯小组的新型显微镜可以研究罕见事件如何影响多孔材料的效率,这对催化、分离科学、腐蚀和生物学非常重要。已经确定的是,当光与分子和蛋白质相互作用时,操纵光是可能的。例如,兰德斯教授已经证明,通过调整光的相位,可以对比相机帧速率更快的事件进行成像。通过整合新的数学和物理工具,当前的项目将产生一种新仪器,以优化的 3D 空间和时间分辨率对多孔材料的快速动态进行成像和跟踪。这项研究工作的跨学科性质为参与的学生提供了光谱学和材料科学以及图像处理和现代信息理论的独特体验,并延续了莱斯大学科学技术跨学科活动的悠久历史。这笔赠款支持兰德斯教授为高中教师提供培训机会,将尖端科学纳入他们的课程材料,以及她创建夏季科学编程课程的新努力。最近,开发了一种称为超时间分辨显微镜(STREM)的新显微镜技术。概念验证测量表明 STREM 可以将传统宽视场相机的时间分辨率提高至少二十倍。这一发展如果与 3D 成像方法和信号处理方面的最新进展相结合,将提供一个解决驱动一系列界面材料特性的多尺度非线性动力学的机会。因此,当前项目的目标是开发和优化 4-D STREM,这是一种用于量化多孔材料中的非线性动力学和结构的化学成像方法。据推测,更好的 3D 亚衍射空间信息,加上改进的时间分辨率和信号处理算法,揭示了多孔界面处发生的异质质量传递、化学和生物机制。该项目将涉及硬件和软件方面的创新,以提高时间和二维空间分辨率。此外,还将开发一种新算法来进行 3D 跟踪。最后,新的显微镜将用于获取和管理一个能够区分常见分析物、样品和仪器条件的机器学习库。该项目获得了一种新仪器,通过提高空间和时间分辨率,优化表征多孔介质分离中的多标量物理和化学。此外,该项目还将产生新的算法,从大型 3D 数据集中提取信息。在应用方面,对孔隙和通道中的质量传输进行更详细的描述是朝着预测分离迈出的一步,目前预测分离是根据经验进行优化的,每年用于工业、政府和学术目的的资金达数十亿美元。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Imaging Switchable Protein Interactions with an Active Porous Polymer Support
- DOI:10.1021/acs.jpcb.0c01807
- 发表时间:2020-06-04
- 期刊:
- 影响因子:3.3
- 作者:Dutta, Chayan;Bishop, Logan D. C.;Landes, Christy F.
- 通讯作者:Landes, Christy F.
A mechanistic examination of salting out in protein–polymer membrane interactions
- DOI:10.1073/pnas.1909860116
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Nicholas A Moringo;Logan D. C. Bishop;Hao Shen;Anastasiia Misiura;Nicole C. Carrejo;Rashad Baiyasi;
- 通讯作者:Nicholas A Moringo;Logan D. C. Bishop;Hao Shen;Anastasiia Misiura;Nicole C. Carrejo;Rashad Baiyasi;
Toward Protein Chromatography by Design: Stochastic Theory, Single-Molecule Parameter Control, and Stimuli-Responsive Materials
通过设计实现蛋白质色谱:随机理论、单分子参数控制和刺激响应材料
- DOI:10.1021/acs.jpcc.2c05887
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dutta, Chayan;Misiura, Anastasiia;Bishop, Logan D.;Marciel, Amanda B.;Kisley, Lydia;Landes, Christy F.
- 通讯作者:Landes, Christy F.
Untying the Gordian KNOT: Unbiased Single Particle Tracking Using Point Clouds and Adaptive Motion Analysis
解开棘手的结:使用点云和自适应运动分析进行无偏单粒子跟踪
- DOI:10.1021/acs.jpca.1c06100
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zepeda O, Jorge;Bishop, Logan D.;Dutta, Chayan;Sarkar-Banerjee, Suparna;Leung, Wesley W.;Landes, Christy F.
- 通讯作者:Landes, Christy F.
Generalized method to design phase masks for 3D super-resolution microscopy
设计 3D 超分辨率显微镜相位掩模的通用方法
- DOI:10.1364/oe.27.003799
- 发表时间:2019
- 期刊:
- 影响因子:3.8
- 作者:Wang, Wenxiao;Ye, Fan;Shen, Hao;Moringo, Nicholas A.;Dutta, Chayan;Robinson, Jacob T.;Landes, Christy F.
- 通讯作者:Landes, Christy F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christy Landes其他文献
月のマントル進化の数値シミュレーション
月幔演化的数值模拟
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Shinnosuke Kawai;David Cooper;Christy Landes;Henning D. Mootz;Haw Yang;Tamiki Komatsuzaki;小河正基 - 通讯作者:
小河正基
Unbiased estimation of physical properties in noisy experimental data
噪声实验数据中物理特性的无偏估计
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Shinnosuke Kawai;David Cooper;Christy Landes;Henning D. Mootz;Haw Yang;Tamiki Komatsuzaki - 通讯作者:
Tamiki Komatsuzaki
Christy Landes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christy Landes', 18)}}的其他基金
CCI Phase I: NSF Center for Adapting Flaws into Features
CCI 第一阶段:NSF 缺陷调整中心
- 批准号:
2413590 - 财政年份:2024
- 资助金额:
$ 46.63万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Adapting Flaws into Features
CCI 第一阶段:NSF 缺陷调整中心
- 批准号:
2124983 - 财政年份:2021
- 资助金额:
$ 46.63万 - 项目类别:
Standard Grant
CAREER: Transport in Supported Polyelectrolyte Membranes
职业:支撑聚电解质膜中的运输
- 批准号:
1151647 - 财政年份:2011
- 资助金额:
$ 46.63万 - 项目类别:
Continuing Grant
Collaborative Research: Ion-exchange adsorption of proteins: a single-molecule investigation
合作研究:蛋白质的离子交换吸附:单分子研究
- 批准号:
1134417 - 财政年份:2011
- 资助金额:
$ 46.63万 - 项目类别:
Standard Grant
相似国自然基金
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
血小板内皮聚集受体1在常染色体显性遗传性多囊肾病发生发展中的作用及机制研究
- 批准号:82300799
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FERMT2/DDX3X信号轴促进胰腺癌发生发展的作用及机制研究
- 批准号:82372605
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
O-GlcNAc糖基化修饰稳定YTHDC1蛋白促进胶质母细胞瘤发展的机制研究
- 批准号:82303835
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elyra 7 Lattice SIM2 Super-Resolution Microscope
Elyra 7 Lattice SIM2 超分辨率显微镜
- 批准号:
10632816 - 财政年份:2023
- 资助金额:
$ 46.63万 - 项目类别:
MRI: Development of an Optical Super-resolution Instrument for Measuring Concentration Profiles and Diffusion Dynamics in Thin Films
MRI:开发用于测量薄膜中的浓度分布和扩散动力学的光学超分辨率仪器
- 批准号:
2215742 - 财政年份:2022
- 资助金额:
$ 46.63万 - 项目类别:
Standard Grant
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10707375 - 财政年份:2022
- 资助金额:
$ 46.63万 - 项目类别:
Leica tauSTED super resolution microscopy for molecular imaging in fixed and live specimens
Leica tauSTED 超分辨率显微镜,用于固定样本和活体样本的分子成像
- 批准号:
10425103 - 财政年份:2022
- 资助金额:
$ 46.63万 - 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10510195 - 财政年份:2022
- 资助金额:
$ 46.63万 - 项目类别: