Instrument Development: 4-D Super Time Resolved Microscopy (4-D STReM) for Understanding Dynamics in Porous Materials
仪器开发:用于了解多孔材料动力学的 4-D 超级时间分辨显微镜 (4-D STReM)
基本信息
- 批准号:1808382
- 负责人:
- 金额:$ 46.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the Chemical Measurement and Imaging Program in the Division of Chemistry, Professor Landes at Rice University is working to understand and optimize processes that occur within porous materials. The goal of the project is to develop a new type of microscope with unprecedented space and time resolution. The Landes group's new microscope allows the study of how rare events impact the efficiency of porous materials that are important for catalysis, separations science, corrosion, and biology. It has been established that it is possible to manipulate light as it interacts with molecules and proteins. For example, Professor Landes has already shown that by shaping light's phase, events faster than the camera frame rate can be imaged. By incorporating new mathematical and physical tools, the current project will result in a new instrument to image and track fast dynamics in porous materials with optimized 3-D space and time resolution. The interdisciplinary nature of this research effort provides participating students with a unique experience at the interface of spectroscopy and materials science, as well as image processing and modern information theory, and continues the strong history of cross-disciplinary activities in science and technology at Rice University. This grant supports Professor Landes to provide training opportunities to high school teachers to incorporate cutting edge science into their course materials, as well as her new effort to create a summer scientific programming course. Recently, a new microscopy technique called super temporal-resolved microscopy (STREM) was developed. Proof-of-concept measurements showed that STREM can improve the time resolution of traditional wide-field cameras by at least twenty times. This development, if combined with recent advances in 3-D imaging methods and signal processing, represents an opportunity to resolve the multiscale, nonlinear dynamics that drive a range of interfacial materials properties. Thus, the current project's objective is to develop and optimize 4-D STREM, a chemical imaging method for quantifying the nonlinear dynamics and structures in porous materials. It is hypothesized that better 3-D sub-diffraction spatial information, coupled with improved time resolution and signal processing algorithms, reveals heterogeneous mass transport, chemical, and biological mechanisms occurring at porous interfaces. The project will involve innovations in both hardware and software to improve the temporal and 2-D spatial resolution. Additionally, a new algorithm is to be developed to track in 3-D. Finally, the new microscope is to be used to acquire and curate a machine learning library capable of differentiating among common analyte, sample, and instrument conditions. A new instrument optimized for characterizing the multiscalar physics and chemistry that underlie separations in porous media, by improving both spatial and temporal resolution is obtained in this project. Further, the project will result in new algorithms to extract information from large 3-D data sets. In terms of applications, a more detailed description of mass transport in pores and channels is a step towards predictive separations, which are currently optimized empirically, amounting to billions of dollars each year for industry, government, and academic purposes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学测量和成像计划的支持下,赖斯大学的Landes教授正在努力理解和优化多孔材料中发生的过程。该项目的目的是开发一种具有前所未有的空间和时间分辨率的新型显微镜。 Landes集团的新显微镜允许研究罕见事件如何影响多孔材料的效率,这些材料对催化,分离科学,腐蚀和生物学很重要。已经确定,可以在与分子和蛋白质相互作用时操纵光。例如,Landes教授已经表明,通过塑造Light的阶段,可以成像比相机框架速率快的事件。通过合并新的数学和物理工具,当前项目将产生一种新的工具,以使用优化的3-D空间和时间分辨率在多孔材料中进行图像和跟踪快速动态。这项研究工作的跨学科性质为参与的学生提供了在光谱和材料科学的界面以及图像处理和现代信息理论的独特经验,并延续了赖斯大学的科学技术跨学科活动的悠久历史。这项赠款支持Landes教授为高中教师提供培训机会,以将尖端科学融入他们的课程材料,以及她创建夏季科学节目课程的新努力。最近,开发了一种新的显微镜技术,称为超时性分辨显微镜(Strem)。概念验证的测量表明,Strem可以至少将传统宽视野摄像机的时间分辨率提高二十倍。如果结合3-D成像方法和信号处理的最新进展,则该发展代表了解决驱动一系列界面材料属性的多尺度非线性动力学的机会。因此,当前项目的目标是开发和优化4-D Strem,这是一种化学成像方法,用于量化多孔材料中的非线性动力学和结构。假设更好的3-D亚分差空间信息,加上改进的时间分辨率和信号处理算法,揭示了在多孔接口处发生的异质质量传输,化学和生物学机制。该项目将涉及硬件和软件的创新,以改善时间和二维空间分辨率。此外,将开发一种新算法以在3-D中跟踪。最后,新的显微镜将用于获取和策划一个能够区分常见分析物,样品和仪器条件的机器学习库。在多孔培养基中分离的基础的多层物理和化学的优化的新仪器通过改善空间和时间分辨率是在该项目中获得的。此外,该项目将导致新算法从大型3-D数据集中提取信息。在应用方面,对毛孔和渠道中大规模运输的更详细说明是迈向预测分离的一步,目前在经验上进行了优化,每年对行业,政府和学术目的每年数十亿美元。该奖项反映了NSF的法定任务,并通过使用该基金会的知识优点和广泛的criperia来评估,这是NSF的法定任务。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Imaging Switchable Protein Interactions with an Active Porous Polymer Support
- DOI:10.1021/acs.jpcb.0c01807
- 发表时间:2020-06-04
- 期刊:
- 影响因子:3.3
- 作者:Dutta, Chayan;Bishop, Logan D. C.;Landes, Christy F.
- 通讯作者:Landes, Christy F.
A mechanistic examination of salting out in protein–polymer membrane interactions
- DOI:10.1073/pnas.1909860116
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Nicholas A Moringo;Logan D. C. Bishop;Hao Shen;Anastasiia Misiura;Nicole C. Carrejo;Rashad Baiyasi;
- 通讯作者:Nicholas A Moringo;Logan D. C. Bishop;Hao Shen;Anastasiia Misiura;Nicole C. Carrejo;Rashad Baiyasi;
Acoustic Vibrations of Al Nanocrystals: Size, Shape, and Crystallinity Revealed by Single-Particle Transient Extinction Spectroscopy
- DOI:10.1021/acs.jpca.0c01190
- 发表时间:2020-05-14
- 期刊:
- 影响因子:2.9
- 作者:Ostovar, Behnaz;Su, Man-Nung;Link, Stephan
- 通讯作者:Link, Stephan
Generalized method to design phase masks for 3D super-resolution microscopy
设计 3D 超分辨率显微镜相位掩模的通用方法
- DOI:10.1364/oe.27.003799
- 发表时间:2019
- 期刊:
- 影响因子:3.8
- 作者:Wang, Wenxiao;Ye, Fan;Shen, Hao;Moringo, Nicholas A.;Dutta, Chayan;Robinson, Jacob T.;Landes, Christy F.
- 通讯作者:Landes, Christy F.
Untying the Gordian KNOT: Unbiased Single Particle Tracking Using Point Clouds and Adaptive Motion Analysis
解开棘手的结:使用点云和自适应运动分析进行无偏单粒子跟踪
- DOI:10.1021/acs.jpca.1c06100
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zepeda O, Jorge;Bishop, Logan D.;Dutta, Chayan;Sarkar-Banerjee, Suparna;Leung, Wesley W.;Landes, Christy F.
- 通讯作者:Landes, Christy F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christy Landes其他文献
月のマントル進化の数値シミュレーション
月幔演化的数值模拟
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Shinnosuke Kawai;David Cooper;Christy Landes;Henning D. Mootz;Haw Yang;Tamiki Komatsuzaki;小河正基 - 通讯作者:
小河正基
Unbiased estimation of physical properties in noisy experimental data
噪声实验数据中物理特性的无偏估计
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Shinnosuke Kawai;David Cooper;Christy Landes;Henning D. Mootz;Haw Yang;Tamiki Komatsuzaki - 通讯作者:
Tamiki Komatsuzaki
Conformational changes impact 3D antibody translational dynamics during separation through an ion exchange membrane
- DOI:
10.1016/j.bpj.2021.11.2704 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Christy Landes - 通讯作者:
Christy Landes
Christy Landes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christy Landes', 18)}}的其他基金
CCI Phase I: NSF Center for Adapting Flaws into Features
CCI 第一阶段:NSF 缺陷调整中心
- 批准号:
2413590 - 财政年份:2024
- 资助金额:
$ 46.63万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Adapting Flaws into Features
CCI 第一阶段:NSF 缺陷调整中心
- 批准号:
2124983 - 财政年份:2021
- 资助金额:
$ 46.63万 - 项目类别:
Standard Grant
CAREER: Transport in Supported Polyelectrolyte Membranes
职业:支撑聚电解质膜中的运输
- 批准号:
1151647 - 财政年份:2011
- 资助金额:
$ 46.63万 - 项目类别:
Continuing Grant
Collaborative Research: Ion-exchange adsorption of proteins: a single-molecule investigation
合作研究:蛋白质的离子交换吸附:单分子研究
- 批准号:
1134417 - 财政年份:2011
- 资助金额:
$ 46.63万 - 项目类别:
Standard Grant
相似国自然基金
剪接因子SNRPA1通过调节R-loop稳态影响肺腺癌发展进程的机制研究
- 批准号:32360143
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
企业层面视角下自由贸易协定条款深度对出口高质量发展的影响:模型拓展与量化分析
- 批准号:72363013
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
新型城镇化与区域协调发展的机制与治理体系研究
- 批准号:72334006
- 批准年份:2023
- 资助金额:167 万元
- 项目类别:重点项目
亦正亦邪Sirt6:Sirt6调控谷氨酰胺代谢促进肝内胆管癌发生发展的分子机制研究
- 批准号:82372667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Elyra 7 Lattice SIM2 Super-Resolution Microscope
Elyra 7 Lattice SIM2 超分辨率显微镜
- 批准号:
10632816 - 财政年份:2023
- 资助金额:
$ 46.63万 - 项目类别:
MRI: Development of an Optical Super-resolution Instrument for Measuring Concentration Profiles and Diffusion Dynamics in Thin Films
MRI:开发用于测量薄膜中的浓度分布和扩散动力学的光学超分辨率仪器
- 批准号:
2215742 - 财政年份:2022
- 资助金额:
$ 46.63万 - 项目类别:
Standard Grant
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10707375 - 财政年份:2022
- 资助金额:
$ 46.63万 - 项目类别:
Leica tauSTED super resolution microscopy for molecular imaging in fixed and live specimens
Leica tauSTED 超分辨率显微镜,用于固定样本和活体样本的分子成像
- 批准号:
10425103 - 财政年份:2022
- 资助金额:
$ 46.63万 - 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10510195 - 财政年份:2022
- 资助金额:
$ 46.63万 - 项目类别: