Bottom-up fundamental approach for characterizing plasticity and deformation in BCC and FCC high entropy alloys

自下而上表征 BCC 和 FCC 高熵合金塑性和变形的基本方法

基本信息

  • 批准号:
    1807708
  • 负责人:
  • 金额:
    $ 46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY:Recently, it has been shown that when five or more elements are combined in nearly equal atomic concentrations, a new class of metals emerges. These metals are typically referred to as multi-component concentrated solid solution alloys, or more commonly high entropy alloys (HEAs). These new complex alloys have drawn substantial attention in recent years due to the vast available composition space for tuning their mechanical, thermal, electrical, and magnetic properties. Over the past decade, several such alloys have been shown experimentally to demonstrate very promising fracture toughness behavior, low temperature ductility, high temperature strength retention, and tensile ductility. These superior properties, as compared to traditional metallic alloys, suggest immense potential for HEAs in a wide range of functional and structural applications. Nevertheless, the fundamental mechanisms that control such properties are not yet fully characterized. Accordingly, this award will support research to fundamentally quantify the mechanisms controlling the properties of these complex alloys, with specific focus on their high temperature mechanical properties for extreme environment applications. This will be accomplished by utilizing a bottom-up multiscale modeling approach (i.e. from atoms to continuum scale). This modeling approach is of high scientific and engineering interest especially with respect to the materials genome initiative. The integration of research, education and outreach in this project is also a central component and will focus on: (1) improve STEM achievement in a predominately African American elementary schools in Baltimore; (2) involve under-represented students from a local historically black college through internships on research in mechanics and materials; and (3) develop an education portfolio that will increase the knowledge of undergraduate and graduate students in fundamentals of state-of-the-art multiscale modeling.TECHNICAL SUMMARY:The primary objectives of this research are to fundamentally identify the underlying mechanisms controlling the ductility at low temperatures, the work-hardening response, and the retention of strength at high temperatures in face-centered cubic (FCC) and body-centered cubic (BCC) multicomponent concentrated solid solution alloys. Primarily, the focus will be on FCC Cantor-like alloys, such as CoCrNi, CoCrFeNi and CoCrFeMnNi alloys, which show very promising fracture toughness behavior and low temperature ductility, as well as refractory BCC HEAs alloys, such as HfNbTiZr, HfNbTaTiZr, and NbTiZr with V, Mo, Ta, and Al additions, which show significant high temperature strength retention and tensile ductility. This will be achieved through a bottom-up coupled approach, which combines molecular dynamics (MD), Kinetic Monte Carlo (KMC), and three-dimensional (3D) discrete dislocation dynamics (DDD) simulations to predict dislocation and twinning mediated plasticity in both FCC and BCC HEAs. The 3D DDD simulations proposed here will be informed by the MD and KMC simulations to also incorporate twinning mediated plasticity and fluctuations in screw dislocation cross-slip activation energy due to statistical variations in local atomic concentrations. The results of these multiscale simulations will also be used to develop an analytical model to predict the high temperature yield stress of BCC multi-component concentrated solid solution alloys.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:最近,研究表明,当五种或更多元素以几乎相等的原子浓度组合时,就会出现一类新的金属。这些金属通常被称为多组分浓固溶体合金,或更常见的是高熵合金(HEA)。近年来,这些新型复杂合金由于具有巨大的可用成分空间来调整其机械、热、电和磁性能,因此引起了广泛关注。在过去的十年中,几种此类合金已通过实验证明表现出非常有前途的断裂韧性行为、低温延展性、高温强度保持性和拉伸延展性。与传统金属合金相比,这些优越的性能表明 HEA 在广泛的功能和结构应用中具有巨大的潜力。然而,控制这些特性的基本机制尚未完全表征。因此,该奖项将支持从根本上量化控制这些复杂合金性能的机制的研究,特别关注其在极端环境应用中的高温机械性能。这将通过利用自下而上的多尺度建模方法(即从原子到连续尺度)来完成。这种建模方法具有很高的科学和工程意义,特别是在材料基因组计划方面。该项目的研究、教育和推广一体化也是一个核心组成部分,重点是:(1) 提高巴尔的摩非裔美国人为主的小学的 STEM 成绩; (2) 让当地一所历史悠久的黑人大学的代表性不足的学生参与力学和材料研究实习; (3) 开发一套教育组合,以增加本科生和研究生在最先进的多尺度建模基础知识方面的知识。 技术摘要:本研究的主要目标是从根本上确定控制延展性的潜在机制面心立方 (FCC) 和体心立方 (BCC) 多组分浓固溶体合金在低温下的加工硬化响应和高温下的强度保留。主要重点是类 FCC Cantor 合金,例如 CoCrNi、CoCrFeNi 和 CoCrFeMnNi 合金,它们表现出非常有前景的断裂韧性行为和低温延展性,以及难熔 BCC HEAs 合金,例如 HfNbTiZr、HfNbTaTiZr 和 NbTiZr添加 V、Mo、Ta 和 Al,显示出显着的高温强度保持率和拉伸延展性。这将通过自下而上的耦合方法来实现,该方法结合了分子动力学 (MD)、动力学蒙特卡罗 (KMC) 和三维 (3D) 离散位错动力学 (DDD) 模拟,以预测位错和孪生介导的可塑性FCC 和 BCC HEA。这里提出的 3D DDD 模拟将由 MD 和 KMC 模拟提供信息,还包含孪晶介导的塑性以及由于局部原子浓度的统计变化而导致的螺旋位错交叉滑移激活能的波动。这些多尺度模拟的结果还将用于开发分析模型来预测 BCC 多组分浓固溶体合金的高温屈服应力。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atomistic simulations and theoretical modeling of dislocation slip and yield response of industrial tantalum alloys
工业钽合金位错滑移和屈服响应的原子模拟和理论建模
  • DOI:
    10.1016/j.mtla.2022.101429
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Singh, Divya;Rao, Satish I.;El-Awady, Jaafar A.
  • 通讯作者:
    El-Awady, Jaafar A.
Surface energies and relaxation of NiCoCr and NiFeX (X = Cu, Co or Cr) equiatomic multiprincipal element alloys from first principles calculations
Core structure and mobility of edge dislocations in face-centered-cubic chemically complex NiCoFe and NiCoFeCu equiatomic solid-solution alloys
  • DOI:
    10.1016/j.mtla.2020.100628
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Li, Wei;Rao, Satish, I;El-Awady, Jaafar A.
  • 通讯作者:
    El-Awady, Jaafar A.
The effect of local chemical ordering on dislocation activity in multi-principle element alloys: A three-dimensional discrete dislocation dynamics study
  • DOI:
    10.1016/j.actamat.2021.117307
  • 发表时间:
    2021-09-27
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Sudmanns, Markus;El-Awady, Jaafar A.
  • 通讯作者:
    El-Awady, Jaafar A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaafar El-Awady其他文献

Jaafar El-Awady的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jaafar El-Awady', 18)}}的其他基金

From Limited Data to the Deformation Field in Metals: A Machine Learning Driven Approach
从有限数据到金属变形场:机器学习驱动的方法
  • 批准号:
    2225675
  • 财政年份:
    2022
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Travel Grant: 10th International Conference on Multiscale Materials Modeling; Baltimore, Maryland; October 19-22, 2020
旅费资助:第十届多尺度材料建模国际会议;
  • 批准号:
    1937162
  • 财政年份:
    2019
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Quantifying the Thermo-Mechanical Response and Strain-Rate Effects in Magnesium Microcrystals
量化镁微晶的热机械响应和应变率效应
  • 批准号:
    1609533
  • 财政年份:
    2016
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
CAREER: Identifying the Micromechanisms Leading to Hydrogen-Induced Intergranular Fracture in Metals
职业:确定导致金属中氢致晶间断裂的微观机制
  • 批准号:
    1454072
  • 财政年份:
    2015
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant

相似国自然基金

面向上臂灵巧假肢自治的多模态感知与双向神经接口研究
  • 批准号:
    52375021
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
共同富裕目标下农民收入向上流动研究:测度、分解与政策机制设计
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
碳锰双功能催化剂低温协同脱除烧结烟气NOx与UP-POPs研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
“Bottom-up”策略构筑金属纳米粒子-多孔有机聚合物复合催化材料
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
外加热流强化预热对阻燃电力电缆竖直向上火蔓延的诱发机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Resolution of inflammation and atrial fibrillation
炎症和心房颤动的解决
  • 批准号:
    10679718
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
Sustained Release of Potent Antiviral Prodrugs for HIV Prevention
持续释放有效的抗病毒前药以预防艾滋病毒
  • 批准号:
    10617540
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
Fundamental Studies of Ni-Catalyzed Organic Reactions
镍催化有机反应的基础研究
  • 批准号:
    10552202
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
Biomedical Resource Core
生物医学资源核心
  • 批准号:
    10747705
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
Research Core
研究核心
  • 批准号:
    10403254
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了