Switching beyond the Molecule using Hydrazones

使用腙超越分子

基本信息

  • 批准号:
    1807428
  • 负责人:
  • 金额:
    $ 43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The development of molecular switches and machines is a vital part of the current scientific drive towards miniaturization. Appreciable advances have been made in recent years in the design of new molecular switches, integrating them into bulk materials, and applying them in new functions. However, there are still many challenges that need to be addressed before such systems can find their way into real-life applications. This research addresses one of these issues, which is the lack of a basic understanding of how to make molecular switches and machines work together towards a useful goal - a solved problem in natural biological systems. To mimic Nature, the Aprahamian research group at Dartmouth College studies the interactions of molecular switches with their environment. This knowledge may lead to the engineering of dynamic, adaptive and self-regulating molecular assemblies that can be used in drug delivery and energy-related applications. The broader impacts of this research include participation in the American Chemical Society's SEED Program and other endeavors to help retain students at different levels of education (high school, undergraduate, and graduate students) in the sciences. Professor Aprahamian also uses interactive demonstrations to educate the public about important concepts related to supramolecular chemistry. These activities are expected to strengthen and extend the group's informal and formal science education partnerships and networks with local schools and science museums.With the support from the Macromolecular, Supramolecular and Nanochemistry Program of the Division of Chemistry, this research examines the coupling of zinc(II)-initiated, coordination-coupled, deprotonation (CCD) of hydrazone switches with other metals, particularly palladium(II). These reactions extend the capabilities of currently known switching cascades and open the way for compartmentalization driven catalysis using self-assembled cages. The Aprahamian group gains a deeper understanding of the factors that control CCD-enabled negative feedback loops and uncovers the underlying rules that lead to analyte regulation. Finally, the group develops new zinc(II) photocages/switches that can couple with CCD and feedback loops to enable the future design of oscillating systems, molecular clocks, and self-regulating assemblies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分子开关和机器的开发是当前科学驱动力的重要组成部分。近年来,在新分子开关的设计,将它们集成到批量材料中,并将其应用于新功能方面,已经取得了明显的进步。但是,在此类系统可以找到现实生活应用程序之前,仍然需要解决许多挑战。这项研究解决了这些问题之一,即缺乏对如何使分子开关和机器共同实现有用目标的基本理解,这是自然生物系统中解决的问题。为了模仿大自然,达特茅斯学院的Aprahamian研究小组研究了分子开关与环境的相互作用。这些知识可能会导致动态,自适应和自我调节的分子组件的工程,这些组件可用于药物输送和与能量相关的应用。这项研究的更广泛影响包括参与美国化学学会的种子计划和其他努力,以帮助在科学中保留不同教育水平的学生(高中,本科生和研究生)。 Aprahamian教授还使用互动演示来教育公众有关与超分子化学有关的重要概念。预计这些活动将加强和扩展该小组与当地学校和科学博物馆的非正式和正规科学教育合作伙伴关系以及网络。在化学部的大分子,超分子和纳米化学计划的支持下,这项研究研究了锌(锌的耦合)( ii)与其他金属(尤其是钯(II))一起进行的,协调耦合,去质子化(CCD)。 这些反应扩展了当前已知的切换级联反应的能力,并为使用自组装的笼子隔间驱动催化开辟了道路。 Aprahamian集团对控制CCD启用的负面反馈循环的因素有了更深入的了解,并发现导致分析物调节的基本规则。最后,该小组开发了新的锌(II)光电/开关,可以将CCD与CCD和反馈循环相结合,以使未来的振荡系统,分子时钟和自我调节的组件的设计。通过基金会的智力优点和更广泛的影响评估标准通过评估来支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Future of Molecular Machines
  • DOI:
    10.1021/acscentsci.0c00064
  • 发表时间:
    2020-03-25
  • 期刊:
  • 影响因子:
    18.2
  • 作者:
    Aprahamian, Ivan
  • 通讯作者:
    Aprahamian, Ivan
Planarization‐Induced Activation Wavelength Red‐Shift and Thermal Half‐Life Acceleration in Hydrazone Photoswitches
腙光电开关中的平坦化 - 诱导激活波长红移和热半衰期加速
  • DOI:
    10.1002/open.201900340
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Shao, Baihao;Aprahamian, Ivan
  • 通讯作者:
    Aprahamian, Ivan
Photon Energy Storage in Strained Cyclic Hydrazones: Emerging Molecular Solar Thermal Energy Storage Compounds
Hydrazones as New Molecular Tools
  • DOI:
    10.1016/j.chempr.2020.08.007
  • 发表时间:
    2020-09-10
  • 期刊:
  • 影响因子:
    23.5
  • 作者:
    Shao, Baihao;Aprahamian, Ivan
  • 通讯作者:
    Aprahamian, Ivan
Building Strain with Large Macrocycles and Using It To Tune the Thermal Half-Lives of Hydrazone Photochromes
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivan Aprahamian其他文献

Ivan Aprahamian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivan Aprahamian', 18)}}的其他基金

Hydrazone-Based Feedback Loops
基于腙的反馈回路
  • 批准号:
    2304983
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Kinetically Trapping the Self-Assembly and Photophysical Properties of Liquid Crystals
动力学捕获液晶的自组装和光物理性质
  • 批准号:
    2104464
  • 财政年份:
    2021
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Collaborative Research: Hydrazone-Based Solid-State Light Emitters
合作研究:基于腙的固态发光体
  • 批准号:
    1506170
  • 财政年份:
    2015
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
CAREER: Hydrazone-Based Switches - Simple Systems for Sophisticated Functions
职业:基于腙的开关 - 实现复杂功能的简单系统
  • 批准号:
    1253385
  • 财政年份:
    2013
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant

相似国自然基金

超过400GPa金刚石对顶砧的研制与应用验证
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    438 万元
  • 项目类别:
电阻型超导限流器失超过程激增气泡对液氮绝缘击穿特性影响规律研究
  • 批准号:
    51907153
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
分枝过程的随机流与随机合并
  • 批准号:
    11871032
  • 批准年份:
    2018
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
连续时空分枝过程与相关带跳随机方程
  • 批准号:
    11771018
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
超过程的极限理论
  • 批准号:
    11671017
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Beyond dopamine: dual neuromodulator regulation of motor variability and learning
超越多巴胺:运动变异性和学习的双重神经调节剂调节
  • 批准号:
    10605853
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
Mechanisms of CRISPR-mediated immunity and applications beyond editing
CRISPR介导的免疫机制和编辑以外的应用
  • 批准号:
    10515419
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
Nonradiative Transition Beyond Energy-Gap Law in Fused-Ring pi-Conjugated Molecules
稠环π共轭分子中超越能隙定律的非辐射跃迁
  • 批准号:
    22K19062
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Mechanisms of CRISPR-mediated immunity and applications beyond editing
CRISPR介导的免疫机制和编辑以外的应用
  • 批准号:
    10668518
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
Genetic code expansion for the construction of beyond rule-of-5 compliant macrocyclic peptide libraries
用于构建超五规则合规大环肽库的遗传密码扩展
  • 批准号:
    10810404
  • 财政年份:
    2021
  • 资助金额:
    $ 43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了