Collaborative Research: Quantum cascade laser transceivers for terahertz wireless communication

合作研究:用于太赫兹无线通信的量子级联激光收发器

基本信息

  • 批准号:
    1807323
  • 负责人:
  • 金额:
    $ 25.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The terahertz is a region of the electromagnetic spectrum lying between microwaves and the infrared range, also known as the "terahertz gap" due to the lack of suitable technologies for its generation and manipulation. On the one hand, conventional electronic devices used to produce microwaves cannot operate at higher frequencies, while on the other hand optical sources such as terahertz lasers typically require cryogenic operation, which is impractical. Thus, novel approaches are needed to develop convenient terahertz sources. The goal of this project is to demonstrate a new class of terahertz sources based on a high-power mid-infrared semiconductor laser (so-called quantum cascade laser) designed to generate a comb of frequencies separated by precisely equidistant terahertz frequency intervals. The resulting terahertz radiation sources will show room temperature operation, narrow linewidth, and wide tunability. These would be attractive for many applications, especially remote sensing. Indeed, hundreds of chemicals from gases to drugs, explosives, and biomolecules have telltale absorption and emission features in the terahertz range. Terahertz sensing would allow one to monitor the ozone depletion, climate change, and environmental pollution. It would give insights into the formation and decay of stars in our galaxy and beyond. Such terahertz sources would also be very valuable in the studies of materials, since many fundamental excitations in matter such as plasma oscillations and sound waves exhibit resonances in the terahertz. The core of the proposed new device architecture consists of a mid-infrared quantum cascade laser generating an optical frequency comb with a terahertz spacing between longitudinal modes, named a harmonic frequency comb. However, instead of using infrared light emitted from the laser as in typical frequency combs, here the intracavity beating of the optical modes constituting the comb is exploited to generate a coherent terahertz signal at room temperature. The focus of this project is to demonstrate such new terahertz sources for sensing applications. These devices will benefit from unprecedented compactness, having a footprint smaller than 1 square centimeter. Thanks to the nature of a frequency comb, they will generate terahertz tones with narrow linewidth (in the Hz range) and high stability. Moreover, they will be able to operate at room temperature with a broad tuning range, from microwaves to the terahertz region, as a result of the fast electron dynamics of the laser. By connecting and synchronizing an array of such devices, it will be possible to coherently scale up the emitted power and enable terahertz beam control, such as beam steering and shaping. Because of these unique features, the proposed sources will rival and potentially outperform other existing systems for terahertz sensing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太赫兹是位于微波和红外范围之间的电磁频谱区域,由于缺乏合适的产生和操纵技术,也被称为“太赫兹间隙”。一方面,用于产生微波的传统电子设备无法在更高频率下工作,而另一方面,太赫兹激光器等光源通常需要低温操作,这是不切实际的。因此,需要新的方法来开发方便的太赫兹源。该项目的目标是展示一种基于高功率中红外半导体激光器(所谓的量子级联激光器)的新型太赫兹源,旨在产生由精确等距太赫兹频率间隔分隔的频率梳。由此产生的太赫兹辐射源将表现出室温操作、窄线宽和宽可调性。这些对于许多应用,尤其是遥感应用来说,都具有吸引力。事实上,从气体到药物、炸药和生物分子的数百种化学物质在太赫兹范围内具有明显的吸收和发射特征。太赫兹传感将使人们能够监测臭氧消耗、气候变化和环境污染。它将深入了解我们银河系及其他星系中恒星的形成和衰变。这种太赫兹源在材料研究中也非常有价值,因为物质中的许多基本激发(例如等离子体振荡和声波)在太赫兹中表现出共振。所提出的新器件架构的核心由中红外量子级联激光器组成,该激光器产生纵模之间具有太赫兹间距的光学频率梳,称为谐波频率梳。然而,这里并没有像典型的频率梳那样使用从激光器发射的红外光,而是利用构成频率梳的光学模式的腔内跳动来在室温下生成相干太赫兹信号。该项目的重点是展示这种用于传感应用的新型太赫兹源。这些设备将受益于前所未有的紧凑性,占地面积小于 1 平方厘米。由于频率梳的性质,它们将产生具有窄线宽(在 Hz 范围内)和高稳定性的太赫兹音调。此外,由于激光器的快速电子动力学,它们将能够在室温下工作,具有从微波到太赫兹区域的广泛调谐范围。通过连接和同步一系列此类设备,将可以连贯地放大发射功率并实现太赫兹光束控制,例如光束转向和整形。由于这些独特的功能,拟议的来源将与其他现有的太赫兹传感系统相媲美,并有可能超越其他现有的太赫兹传感系统。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frequency combs induced by phase turbulence
  • DOI:
    10.1038/s41586-020-2386-6
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    M. Piccardo;B. Schwarz;D. Kazakov;Maximilian Beiser;N. Opačak;Yongrui Wang;S. Jha;J. Hillbrand-
  • 通讯作者:
    M. Piccardo;B. Schwarz;D. Kazakov;Maximilian Beiser;N. Opačak;Yongrui Wang;S. Jha;J. Hillbrand-
Defect-engineered ring laser harmonic frequency combs
  • DOI:
    10.1364/optica.430896
  • 发表时间:
    2021-10-20
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Kazakov, Dmitry;Opacak, Nikola;Capasso, Federico
  • 通讯作者:
    Capasso, Federico
Radio frequency transmitter based on a laser frequency comb
  • DOI:
    10.1073/pnas.1903534116
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Piccardo;Michele Tamagnone;B. Schwarz;P. Chevalier;N. Rubin;Yongrui Wang;Christine A. Wang;M. Connors;Daniel McNulty;A. Belyanin;F. Capasso
  • 通讯作者:
    M. Piccardo;Michele Tamagnone;B. Schwarz;P. Chevalier;N. Rubin;Yongrui Wang;Christine A. Wang;M. Connors;Daniel McNulty;A. Belyanin;F. Capasso
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Federico Capasso其他文献

Time Reversal Differentiation of FDTD for Photonic Inverse Design
用于光子逆设计的 FDTD 时间反演微分
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Rui Jie Tang;S. W. D. Lim;M. Ossiander;Xinghui Yin;Federico Capasso
  • 通讯作者:
    Federico Capasso
Highly Confined Hybridized Polaritons in Scalable van der Waals Heterostructure Resonators.
可扩展范德华异质结构谐振器中的高度受限混合极化子。
  • DOI:
    10.1021/acsnano.3c13047
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Yue Luo;Ji;Jiadi Zhu;M. Tamagnone;Federico Capasso;Tomás Palacios;Jing Kong;William L. Wilson
  • 通讯作者:
    William L. Wilson
MIT Open Access Articles Bonding, antibonding and tunable optical forces in asymmetric membranes
麻省理工学院开放获取文章非对称膜中的键合、反键合和可调光学力
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alejandro W. Rodriguez;A. McCauley;Pui;David P. Woolf;E. Iwase;Federico Capasso;M. Lončar;Steven G. Johnson
  • 通讯作者:
    Steven G. Johnson
Metasurface Polarization Optics
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Federico Capasso
  • 通讯作者:
    Federico Capasso

Federico Capasso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Federico Capasso', 18)}}的其他基金

Mid-infrared reconfigurable pulse generators
中红外可重构脉冲发生器
  • 批准号:
    2221715
  • 财政年份:
    2022
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
EAGER: Combining van der Waals heterostructures and superlattices: new approach to 2D tunable optoelectronic devices
EAGER:结合范德华异质结构和超晶格:二维可调谐光电器件的新方法
  • 批准号:
    2015668
  • 财政年份:
    2020
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum cascade laser sources of high-power, coherent frequency combs
合作研究:高功率相干频率梳的量子级联激光源
  • 批准号:
    1614631
  • 财政年份:
    2016
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
EAGER: A new coupling scheme for surface plasmon polaritons using structured illumination
EAGER:使用结构照明的表面等离子体激元的新耦合方案
  • 批准号:
    1347251
  • 财政年份:
    2013
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Ultrashort pulse generation and mid-infrared frequency combs from quantum cascade lasers
合作研究:量子级联激光器的超短脉冲生成和中红外频率梳
  • 批准号:
    1230477
  • 财政年份:
    2012
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant

相似国自然基金

基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
  • 批准号:
    12305031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无经典信道高效连续变量量子密钥分发技术研究
  • 批准号:
    62371060
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
可控掺杂小带隙硫化铅量子点薄膜及同质结光电二极管研究
  • 批准号:
    62304085
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
基于微区光电性能测量技术的红光微型量子点发光二极管尺寸缩小失效机制研究
  • 批准号:
    12374385
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于时域分辨的单个量子点的双激子结合能研究
  • 批准号:
    62305201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了