Collaborative Research: Quantum cascade laser transceivers for terahertz wireless communication

合作研究:用于太赫兹无线通信的量子级联激光收发器

基本信息

  • 批准号:
    1807323
  • 负责人:
  • 金额:
    $ 25.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The terahertz is a region of the electromagnetic spectrum lying between microwaves and the infrared range, also known as the "terahertz gap" due to the lack of suitable technologies for its generation and manipulation. On the one hand, conventional electronic devices used to produce microwaves cannot operate at higher frequencies, while on the other hand optical sources such as terahertz lasers typically require cryogenic operation, which is impractical. Thus, novel approaches are needed to develop convenient terahertz sources. The goal of this project is to demonstrate a new class of terahertz sources based on a high-power mid-infrared semiconductor laser (so-called quantum cascade laser) designed to generate a comb of frequencies separated by precisely equidistant terahertz frequency intervals. The resulting terahertz radiation sources will show room temperature operation, narrow linewidth, and wide tunability. These would be attractive for many applications, especially remote sensing. Indeed, hundreds of chemicals from gases to drugs, explosives, and biomolecules have telltale absorption and emission features in the terahertz range. Terahertz sensing would allow one to monitor the ozone depletion, climate change, and environmental pollution. It would give insights into the formation and decay of stars in our galaxy and beyond. Such terahertz sources would also be very valuable in the studies of materials, since many fundamental excitations in matter such as plasma oscillations and sound waves exhibit resonances in the terahertz. The core of the proposed new device architecture consists of a mid-infrared quantum cascade laser generating an optical frequency comb with a terahertz spacing between longitudinal modes, named a harmonic frequency comb. However, instead of using infrared light emitted from the laser as in typical frequency combs, here the intracavity beating of the optical modes constituting the comb is exploited to generate a coherent terahertz signal at room temperature. The focus of this project is to demonstrate such new terahertz sources for sensing applications. These devices will benefit from unprecedented compactness, having a footprint smaller than 1 square centimeter. Thanks to the nature of a frequency comb, they will generate terahertz tones with narrow linewidth (in the Hz range) and high stability. Moreover, they will be able to operate at room temperature with a broad tuning range, from microwaves to the terahertz region, as a result of the fast electron dynamics of the laser. By connecting and synchronizing an array of such devices, it will be possible to coherently scale up the emitted power and enable terahertz beam control, such as beam steering and shaping. Because of these unique features, the proposed sources will rival and potentially outperform other existing systems for terahertz sensing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Terahertz是位于微波和红外范围之间的电磁光谱的区域,也称为“ Terahertz Gap”,因为缺乏适合其生成和操纵的技术。一方面,用于生产微波的常规电子设备不能以较高的频率运行,而另一方面,光源(例如Terahertz Lasers)通常需要低温操作,这是不切实际的。因此,需要采用新颖的方法来开发方便的Terahertz来源。该项目的目的是基于高功率中红外半导体激光器(所谓的量子级联激光器),展示一类新的Terahertz源,旨在生成由精确等距的Terahertz频率间隔分隔的频率的梳子。所得的Terahertz辐射源将显示室温运行,狭窄的线宽和宽可调性。这些对于许多应用程序,尤其是遥感。实际上,在Terahertz范围内,数百种从气体到药物,炸药和生物分子具有明显的吸收和排放特征。 Terahertz的传感将使人们可以监测臭氧耗竭,气候变化和环境污染。它将深入了解我们银河系及以后的恒星的形成和衰变。这种Terahertz的来源在材料研究中也将非常有价值,因为等离子体振荡和声波等物质的许多基本激发在Terahertz中表现出共鸣。提议的新设备体系结构的核心由中红外量子级联激光器组成,该激光器在纵向模式之间使用Terahertz间距产生光频梳,称为谐波频率梳子。但是,在此处,构成梳子的光学模式的腔内跳动不如在典型的频率梳中使用从激光发出的红外光,而是利用梳子在室温下生成连贯的Terahertz信号。该项目的重点是展示这种新的Terahertz来传感应用程序。这些设备将受益于前所未有的紧凑性,足迹小于1平方厘米。由于频率梳的性质,它们将产生带有狭窄线宽(Hz范围内)和高稳定性的Terahertz音调。此外,由于激光的快速电子动力学,他们将能够在室温下以广泛的调整范围进行操作。通过连接和同步此类设备的数组,可以连贯地扩展发射功率并实现Terahertz Beam Control,例如梁转向和塑形。由于这些独特的功能,拟议中的资源将与Terahertz感应的其他现有系统竞争,并可能优于其他现有系统。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Defect-engineered ring laser harmonic frequency combs
  • DOI:
    10.1364/optica.430896
  • 发表时间:
    2021-10-20
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Kazakov, Dmitry;Opacak, Nikola;Capasso, Federico
  • 通讯作者:
    Capasso, Federico
Frequency combs induced by phase turbulence
  • DOI:
    10.1038/s41586-020-2386-6
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    M. Piccardo;B. Schwarz;D. Kazakov;Maximilian Beiser;N. Opačak;Yongrui Wang;S. Jha;J. Hillbrand-
  • 通讯作者:
    M. Piccardo;B. Schwarz;D. Kazakov;Maximilian Beiser;N. Opačak;Yongrui Wang;S. Jha;J. Hillbrand-
Radio frequency transmitter based on a laser frequency comb
  • DOI:
    10.1073/pnas.1903534116
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Piccardo;Michele Tamagnone;B. Schwarz;P. Chevalier;N. Rubin;Yongrui Wang;Christine A. Wang;M. Connors;Daniel McNulty;A. Belyanin;F. Capasso
  • 通讯作者:
    M. Piccardo;Michele Tamagnone;B. Schwarz;P. Chevalier;N. Rubin;Yongrui Wang;Christine A. Wang;M. Connors;Daniel McNulty;A. Belyanin;F. Capasso
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Federico Capasso其他文献

Time Reversal Differentiation of FDTD for Photonic Inverse Design
用于光子逆设计的 FDTD 时间反演微分
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Rui Jie Tang;S. W. D. Lim;M. Ossiander;Xinghui Yin;Federico Capasso
  • 通讯作者:
    Federico Capasso
Highly Confined Hybridized Polaritons in Scalable van der Waals Heterostructure Resonators.
可扩展范德华异质结构谐振器中的高度受限混合极化子。
  • DOI:
    10.1021/acsnano.3c13047
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Yue Luo;Ji;Jiadi Zhu;M. Tamagnone;Federico Capasso;Tomás Palacios;Jing Kong;William L. Wilson
  • 通讯作者:
    William L. Wilson
MIT Open Access Articles Bonding, antibonding and tunable optical forces in asymmetric membranes
麻省理工学院开放获取文章非对称膜中的键合、反键合和可调光学力
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alejandro W. Rodriguez;A. McCauley;Pui;David P. Woolf;E. Iwase;Federico Capasso;M. Lončar;Steven G. Johnson
  • 通讯作者:
    Steven G. Johnson
Metasurface Polarization Optics
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Federico Capasso
  • 通讯作者:
    Federico Capasso

Federico Capasso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Federico Capasso', 18)}}的其他基金

Mid-infrared reconfigurable pulse generators
中红外可重构脉冲发生器
  • 批准号:
    2221715
  • 财政年份:
    2022
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
EAGER: Combining van der Waals heterostructures and superlattices: new approach to 2D tunable optoelectronic devices
EAGER:结合范德华异质结构和超晶格:二维可调谐光电器件的新方法
  • 批准号:
    2015668
  • 财政年份:
    2020
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum cascade laser sources of high-power, coherent frequency combs
合作研究:高功率相干频率梳的量子级联激光源
  • 批准号:
    1614631
  • 财政年份:
    2016
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
EAGER: A new coupling scheme for surface plasmon polaritons using structured illumination
EAGER:使用结构照明的表面等离子体激元的新耦合方案
  • 批准号:
    1347251
  • 财政年份:
    2013
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Ultrashort pulse generation and mid-infrared frequency combs from quantum cascade lasers
合作研究:量子级联激光器的超短脉冲生成和中红外频率梳
  • 批准号:
    1230477
  • 财政年份:
    2012
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant

相似国自然基金

量子启发的复合语义视频实例检索技术研究
  • 批准号:
    62372339
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
  • 批准号:
    12305031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
层间耦合强化对转角双层过渡金属硫化物的量子物态调控研究
  • 批准号:
    12304540
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
彭罗斯准晶中强关联量子多体系统的蒙特卡罗研究
  • 批准号:
    12304171
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于时域分辨的单个量子点的双激子结合能研究
  • 批准号:
    62305201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了