Collaborative Research: Engineering Human 3D Cardiac Tissue Model of Hypertrophic Cardiomyopathy
合作研究:肥厚型心肌病人体 3D 心脏组织模型工程
基本信息
- 批准号:1804875
- 负责人:
- 金额:$ 29.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Currently, human induced pluripotent stem cell (hiPSC) technology (a Nobel Prize winning technology that can turn abundant human cells, such as skin cells and fat cells, into stem cells that can give rise to every other cell type in the body) has made it possible to model human heart diseases in cell culture as a "disease-in-a-dish." However, the grand challenge in current hiPSC disease modeling is that these models have tended to simplify the diseases as being a result of a single defective gene without taking into account the many other influences of genetic-environmental interactions. Specifically, hypertrophic cardiomyopathy (HCM), a condition in which the heart cells enlarge causing the heart wall to thicken, is the leading cause of sudden cardiac death among young adults and athletes, which indicates that physical stress increases the risk of developing heart failure in the patients already at risk due to genetic factors. Therefore, to develop useful "HCM-in-a dish" model systems, it is necessary to precisely control the environmental stress exerted on hiPS-derived cardiac tissues. This project focuses on the MYBPC3 gene, which is one of the most frequently mutated HCM genes. Though the relationship has been established, the mechanisms by which MYBPC3 mutations lead to HCM are not known. Thus, the primary goal of this project is to investigate the correlation between HCM characteristics and reduced MYBPC3 expression, and how this could be influenced by the increase of environmental stress to the cardiac tissues. Key to the success of this effort is creating a functional/beating 3D cardiac tissue model of HCM, which offers better understanding of how the genetic defects combine with the cellular and tissue environment to initiate and advance the disease. More broadly, the strategies developed in this project could be applied to studying other cardiac diseases and potentially lead to new therapies for disease management and treatment. This new approach (which requires hiPSC technology, cardiac tissue engineering, advanced 3D bioprinting, and materials processing and characterization) will provide significant and presently unavailable opportunities for high school, undergraduate and graduate students to have exciting research experiences and state-of-the-art training in biomedical engineering and nanotechnology. This will be accomplished with coordinated, structured instruction and assessments in the form of coursework, seminars, and workshops, as well as with participation in the research laboratory environment.The primary goal of this project is to establish an isogenic, human induced pluripotent stem cell (hiPSs) based tissue model of hypertrophic cardiomyopathy (HCM), for studying how genetic defects interplay with the cellular and tissue environment to initiate and progress the disease. HCM is the leading cause of sudden cardiac death among young adults and athletes, which indicates that physical stress increases the risk of developing heart failure in patients with HCM-related genetic predispositions. This project focuses on the MYBPC3 gene, one of the most frequent mutated HCM genes, though molecular mechanisms by which MYBPC3 mutations lead to HCM remain elusive. The central hypothesis of this project is that the severity of HCM phenotype would be dose-dependent on the reduction of MYBPC3 gene expression and protein content (haploinsufficiency), which could be exacerbated by the increase of environmental stress to cardiac microtissues derived from hiPSCs (hiPS-microCTs). The microtissue model will be established by integrating: 1) hiPSC technology for understanding human-specific HCM disease mechanisms associated with MYBPC3 mutations, 2) laser-based bioprinting method for the creation of three-dimensional (3D) hiPS-microCTs on the filamentous matrices with controllable biomechanical stress, and 3) gene-editing approach for the generation of MYBPC3 loss-of-function mutations with identical genetic background (isogenic) as wild type (WT) and dose-dependent reduction of MYBPC3 gene expression. The research plan is organized under three objectives: 1) To correlate the biomechanical stress presented to the MYBPC3 deficient isogenic hiPS-microCTs with the HCM disease severity based on the primary phenotypic metrics; 2) To correlate the haploinsufficiency level in the MYBPC3 deficient isogenic hiPS-microCTs with the HCM disease severity under different biomechanical stress; and 3) To elucidate the molecular mechanisms involved in the stress-induced disease progression of MYBPC3-associated HCM. The combination of hiPSC technology, 3D bioprinting, gene editing method and tissue engineering approaches provides great potential in the development of next generation hiPSC-based disease-specific in vitro preclinical tissue models. This model will be a significant advancement for investigating genotype-phenotype correlation associated with the clinical heterogeneity, elucidating the disease progression in human cardiomyopathies, and developing new therapeutic strategies for disease management and treatment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前,人类诱导的多能干细胞(HIPSC)技术(一种可以将丰富的人类细胞(例如皮肤细胞和脂肪细胞)变成可以引起体内其他每种细胞类型的干细胞的诺贝尔奖获奖技术)使得可以将细胞培养中的人类心脏病建模为“疾病中的疾病”。但是,当前HIPSC疾病建模的巨大挑战是,这些模型倾向于简化疾病,这是单个缺陷基因的结果,而没有考虑到遗传环境相互作用的许多其他影响。具体而言,肥厚的心肌病(HCM)是心脏细胞增大导致心脏壁增厚的疾病,是年轻人和运动员猝死的主要原因,这表明身体压力增加了由于遗传因素而导致患者已经处于风险中的患者心脏衰竭的风险。因此,要开发有用的“ HCM-In-A-In-A-In-a Dish”模型系统,必须精确控制施加在臀部衍生的心脏组织上的环境应力。 该项目着重于MyBPC3基因,该基因是最常见的HCM基因之一。 尽管已经建立了关系,但MyBPC3突变导致HCM的机制尚不清楚。因此,该项目的主要目标是研究HCM特征与MYBPC3表达降低之间的相关性,以及如何通过对心脏组织的环境应力增加来影响这。 这项工作成功的关键是创建HCM的功能性/殴打3D心脏组织模型,该模型可以更好地了解遗传缺陷如何与细胞和组织环境结合起来,从而启动和推进疾病。更广泛地说,该项目中制定的策略可用于研究其他心脏病,并有可能导致新的疾病管理和治疗疗法。这种新方法(需要HIPSC技术,心脏组织工程,高级3D生物打印以及材料处理和表征)将为高中,本科和研究生提供令人兴奋的研究经验以及生物医学工程和纳米技术的最先进的研究经验,并为目前提供重要的机会。这将通过课程,研讨会和研讨会的形式进行协调,结构化的教学和评估以及参与研究实验室环境来实现。该项目的主要目的是建立一个基因的,人类引起的多能干细胞(HIPS)基于肥大性心脏病(HCM)的基于型号的组织模型(HCM)的组织模型,用于研究型号(HCM),以进行研究,以进行型号造型(HCM),以进行造型锻炼效率(HCM),用于造型锻炼效率(HCM),用于造型锻炼效果,以进行造型锻炼措施(HCM)造型(HCM)造型(HCM),以实现锻炼效率(HCM)。启动并发展疾病。 HCM是年轻人和运动员心脏猝死的主要原因,这表明身体压力会增加与HCM相关遗传易感性患者患心力衰竭的风险。该项目着重于MyBPC3基因,MyBPC3基因是最常见的突变HCM基因之一,尽管MyBPC3突变导致HCM仍然难以捉摸。该项目的核心假设是,HCM表型的严重程度将取决于降低MyBPC3基因表达和蛋白质含量(单倍弥补)的剂量,这可能会因从HIPSCS衍生而来的心脏压力增加而加剧环境压力,从而加剧(HIPS-Microcts)。 将通过集成:1)与MYBPC3突变相关的人类特异性HCM疾病机制来建立微动物模型,2)基于激光的生物打印方法,用于创建三维(3D)hips-microcts在交纸子上损失的三维(3D)hips-microcts的hips-microcts,用于可控的生物力学损失,并在3)中产生了跨度跨度的基因跨度和3)基因效果。相同的遗传背景(ISEGENIC)与MyBPC3基因表达相同的野生型(WT)和剂量依赖性降低。该研究计划是在三个目标下组织的:1)将呈现的生物力学应力与MyBPC3缺乏的同源性HIPS微神经与基于主要表型指标的HCM疾病严重程度相关联; 2)将MYBPC3缺乏源性的髋关节 - 微观特性与HCM疾病的严重程度不同,将单倍不足的水平与不同的生物力学应力相关联; 3)阐明与MYBPC3相关HCM的应激诱导疾病进展有关的分子机制。 HIPSC技术,3D生物打印,基因编辑方法和组织工程方法的组合为下一代基于HIPSC的基于HIPSC的特异性体外临床前组织模型提供了巨大的潜力。 This model will be a significant advancement for investigating genotype-phenotype correlation associated with the clinical heterogeneity, elucidating the disease progression in human cardiomyopathies, and developing new therapeutic strategies for disease management and treatment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microsystems for electromechanical stimulations to engineered cardiac tissues
- DOI:10.21037/mps.2018.11.01
- 发表时间:2018-01-01
- 期刊:
- 影响因子:0
- 作者:Ma;Hoang, P.;Santoni, SM.
- 通讯作者:Santoni, SM.
Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload
- DOI:10.1038/s41551-018-0280-4
- 发表时间:2018-12-01
- 期刊:
- 影响因子:28.1
- 作者:Ma, Zhen;Huebsch, Nathaniel;Healy, Kevin E.
- 通讯作者:Healy, Kevin E.
Quantification of Contractile Dynamic Complexities Exhibited by Human Stem Cell-Derived Cardiomyocytes Using Nonlinear Dimensional Analysis
- DOI:10.1038/s41598-019-51197-7
- 发表时间:2019-10-11
- 期刊:
- 影响因子:4.6
- 作者:Hoang, Plansky;Jacquir, Sabir;Ma, Zhen
- 通讯作者:Ma, Zhen
Stimuli-responsive biomaterials for cardiac tissue engineering and dynamic mechanobiology.
- DOI:10.1063/5.0025378
- 发表时间:2021-03
- 期刊:
- 影响因子:6
- 作者:Shi H;Wang C;Ma Z
- 通讯作者:Ma Z
Micro-engineered architected metamaterials for cell and tissue engineering
用于细胞和组织工程的微工程超材料
- DOI:10.1016/j.mtadv.2022.100206
- 发表时间:2022
- 期刊:
- 影响因子:10
- 作者:Wang, Chenyan;Vangelatos, Zacharias;Grigoropoulos, Costas P.;Ma, Zhen
- 通讯作者:Ma, Zhen
共 8 条
- 1
- 2
Zhen Ma其他文献
Development of 3D models of pelvic floor muscles based on deformable models
基于可变形模型的盆底肌肉3D模型的开发
- DOI:
- 发表时间:20092009
- 期刊:
- 影响因子:0
- 作者:Zhen Ma;J. Tavares;R. JorgeZhen Ma;J. Tavares;R. Jorge
- 通讯作者:R. JorgeR. Jorge
Experimental investigations on enhanced alternating-magnetic field-assisted finishing of stereolithographic 3D printing zirconia ceramics
立体光刻3D打印氧化锆陶瓷增强交变磁场辅助精加工的实验研究
- DOI:10.1016/j.ceramint.2022.08.22010.1016/j.ceramint.2022.08.220
- 发表时间:20222022
- 期刊:
- 影响因子:5.2
- 作者:Zhiguang Sun;Yebing Tian;Zenghua Fan;Cheng Qian;Zhen Ma;Ling Li;Honglin Yu;Jiang GuoZhiguang Sun;Yebing Tian;Zenghua Fan;Cheng Qian;Zhen Ma;Ling Li;Honglin Yu;Jiang Guo
- 通讯作者:Jiang GuoJiang Guo
Editorial: Bioengineering and biotechnology approaches in cardiovascular regenerative medicine, volume II
社论:心血管再生医学中的生物工程和生物技术方法,第二卷
- DOI:10.3389/fbioe.2024.138064610.3389/fbioe.2024.1380646
- 发表时间:20242024
- 期刊:
- 影响因子:5.7
- 作者:Mehdi Salar Amoli;Zhen Ma;Yuji Nakada;Keiichi Fukuda;Jianyi Zhang;V. SerpooshanMehdi Salar Amoli;Zhen Ma;Yuji Nakada;Keiichi Fukuda;Jianyi Zhang;V. Serpooshan
- 通讯作者:V. SerpooshanV. Serpooshan
Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization
使用对齐策略和自适应批量标准化的组合来增强脑机接口的跨数据集传输性能
- DOI:10.1088/1741-2552/ac1ed210.1088/1741-2552/ac1ed2
- 发表时间:2021-082021-08
- 期刊:
- 影响因子:4
- 作者:Lichao Xu;Minpeng Xu;Zhen Ma;Kun Wang;Tzyy-Ping Jung;Dong MingLichao Xu;Minpeng Xu;Zhen Ma;Kun Wang;Tzyy-Ping Jung;Dong Ming
- 通讯作者:Dong MingDong Ming
Genome-wide comparative analysis of the SHSP, HSP60/10 and HSP90 genes reveals differential heat stress responses in estivation of the sea cucumber Apostichopus japonicus
SHSP、HSP60/10 和 HSP90 基因的全基因组比较分析揭示了刺参夏眠时的不同热应激反应
- DOI:10.1111/are.1398610.1111/are.13986
- 发表时间:20192019
- 期刊:
- 影响因子:2
- 作者:Lei Gao;Zihao Yuan;Zhen Ma;Zhao Li;Simeng Yu;Yunfeng Li;Chongbo HeLei Gao;Zihao Yuan;Zhen Ma;Zhao Li;Simeng Yu;Yunfeng Li;Chongbo He
- 通讯作者:Chongbo HeChongbo He
共 108 条
- 1
- 2
- 3
- 4
- 5
- 6
- 22
Zhen Ma的其他基金
FMSG: Bio: Advancing Extracellular Vesicle Biomanufacturing of CRISPR-Edited Human iPSC-derived MSCs with Next-Generation Purification
FMSG:生物:利用下一代纯化技术推进 CRISPR 编辑的人 iPSC 衍生的 MSC 的细胞外囊泡生物制造
- 批准号:22291112229111
- 财政年份:2023
- 资助金额:$ 29.85万$ 29.85万
- 项目类别:Standard GrantStandard Grant
Probing Cellular Dynamic Mechanobiology Using Human Cardiomyocytes on a Stimuli-Responsive Nano-Topographic Substrate
在刺激响应纳米拓扑基底上使用人类心肌细胞探测细胞动态力学生物学
- 批准号:21301922130192
- 财政年份:2021
- 资助金额:$ 29.85万$ 29.85万
- 项目类别:Standard GrantStandard Grant
CAREER: Engineering Stem Cell-Based Cardiac Organoids
职业:工程基于干细胞的心脏类器官
- 批准号:19437981943798
- 财政年份:2020
- 资助金额:$ 29.85万$ 29.85万
- 项目类别:Continuing GrantContinuing Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于协作工程的AI赋能人机团队协作中的信任研究
- 批准号:72271236
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
企业跨国混合式虚拟团队协作中的个人信任提升研究:基于协作工程方法
- 批准号:71571045
- 批准年份:2015
- 资助金额:46.0 万元
- 项目类别:面上项目
面向钻井工程实时监测的协作式MIMO无线传感器网络应用研究
- 批准号:51174084
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
互联网环境下国际团队中的个人信任发展规律实证研究:基于建导式协作背景
- 批准号:71101029
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:23198952319895
- 财政年份:2024
- 资助金额:$ 29.85万$ 29.85万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:23375062337506
- 财政年份:2024
- 资助金额:$ 29.85万$ 29.85万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:23239842323984
- 财政年份:2024
- 资助金额:$ 29.85万$ 29.85万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Protein engineering and processing of plant viral templates for controlled nanoparticle synthesis
合作研究:用于受控纳米颗粒合成的植物病毒模板的蛋白质工程和加工
- 批准号:24260652426065
- 财政年份:2024
- 资助金额:$ 29.85万$ 29.85万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:23198962319896
- 财政年份:2024
- 资助金额:$ 29.85万$ 29.85万
- 项目类别:Standard GrantStandard Grant