CAREER: Integrated Research and Education on Self-Activated, Transparent Harmonics-Based Wireless Sensing Systems Using Graphene Bioelectronics

职业:利用石墨烯生物电子学对自激活、透明谐波无线传感系统进行综合研究和教育

基本信息

  • 批准号:
    1752123
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

The internet-of-things has recently gained popularity in the cost-effective and long-term health monitoring, enabled by collecting and analyzing biological information from wearable micro- and nano-scale sensors. Although battery-free micro-sensors can achieve inexpensive, long-lived and maintenance-free operation, these miniature sensors usually suffer from unwanted electromagnetic interferences, such as clutters, echoes, and multipath fading, which greatly reduce the signal-to-noise ratio and the wireless interrogation range. To surmount these challenges, this research project will investigate a new class of self-powered, chemically-tuned harmonic transponders as wireless biosensors. The harmonic biosensor consists of all-graphene antenna and integrated circuit (graphene is, basically, a single atomic layer of graphite), which can be made transparent, light-weight, flexible, and biocompatible for medical applications, thus making possible a contact lens sensor for low-cost, portable, and continuous diagnosis of pathogen bacteria, proteins, and versatile biomolecular markers. The proposed wireless bio-sensing technology may lead to various applications, such as detection of viral eye infections, ocular surface tumors, and intraocular pressure. In addition, the project will also integrate the research into the new courses and outreach activities in Wayne State University (e.g., ReBUILDetroit Program, Richard Barber Interdisciplinary Research Program, and WSU STEM Days) for recruiting under-represented and K-12 students in the Detroit metropolitan area and promoting their interest in pursuing a career in radio-frequency (RF) engineering and biomedical electronics. The goal of this research project is to investigate the low-noise, energy-efficient wireless micro-sensor system based on all-graphene RF- and bio-electronics. The key scientific advance of this research lies in the harmonics-based bio-sensing technique, which uses a fully passive and chemically reconfigurable transponder as a harmonic biosensor to achieve real-time and long-range wireless bio-sensing. Fundamentally different from conventional backscatter sensors, the harmonic biosensor, launching and detecting signals of orthogonal frequencies, can enable longer detection range against electromagnetic interferences and human-body backscatter clutters. The harmonic biosensor can be realized with a simple graphene-based bioelectronic circuit which combines functions of a biosensor and a frequency multiplier into a single module, based on the unique ambipolar and tunable electronic properties of graphene transistors. Moreover, this bio-sensitive RF transponder can be connected to a transparent, dual-band graphene antenna placed onto the flexible biocompatible substrate. The selective binding of biomolecules, such as infectious or bio-threat agents, on the graphene harmonic biosensor can be wirelessly monitored by launching a monotone RF signal and detecting the strength of the backscattered second harmonic, as the frequency conversion efficiency is altered by the biomolecular concentration. If successful, the compact and transparent graphene harmonic biosensor can be integrated on the soft contact lens to sensitively detect targeted pathogen bacteria, infectious agents, diseases, or metabolic changes of interest, and wirelessly transmit data without any power source or sophisticated circuit. With further development, the proposed wireless biosensors can have broad impacts in healthcare monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网最近在经济高效的长期健康监测领域得到了普及,它通过从可穿戴微米级和纳米级传感器收集和分析生物信息来实现。尽管无电池微型传感器可以实现廉价、长寿命和免维护的运行,但这些微型传感器通常会受到不必要的电磁干扰,例如杂波、回声和多径衰落,从而大大降低了信噪比和无线询问范围。为了克服这些挑战,该研究项目将研究一种新型自供电、化学调谐谐波应答器作为无线生物传感器。谐波生物传感器由全石墨烯天线和集成电路(石墨烯基本上是石墨的单原子层)组成,可以制成透明、轻质、柔性和生物相容性的医疗应用,从而使隐形眼镜成为可能用于对病原体细菌、蛋白质和多功能生物分子标记物进行低成本、便携式和连续诊断的传感器。所提出的无线生物传感技术可能会带来各种应用,例如病毒性眼部感染、眼表肿瘤和眼内压的检测。此外,该项目还将把研究成果融入韦恩州立大学的新课程和外展活动(例如 ReBUILDetroit 计划、Richard Barber 跨学科研究计划和 WSU STEM Days)中,以招募代表性不足的学生和 K-12 学生。底特律大都市区,并促进他们对射频 (RF) 工程和生物医学电子职业的兴趣。该研究项目的目标是研究基于全石墨烯射频和生物电子学的低噪声、节能无线微传感器系统。这项研究的关键科学进展在于基于谐波的生物传感技术,该技术利用完全无源且化学可重构的应答器作为谐波生物传感器来实现实时、远距离的无线生物传感。与传统的反向散射传感器有着本质的区别,谐波生物传感器通过发射和检测正交频率的信号,可以实现更远的检测距离,以对抗电磁干扰和人体反向散射杂波。谐波生物传感器可以通过简单的基于石墨烯的生物电子电路来实现,该电路基于石墨烯晶体管独特的双极和可调谐电子特性,将生物传感器和倍频器的功能组合到单个模块中。此外,这种生物敏感射频应答器可以连接到放置在柔性生物相容性基板上的透明双频石墨烯天线。生物分子(例如传染性或生物威胁剂)在石墨烯谐波生物传感器上的选择性结合可以通过发射单调射频信号并检测反向散射二次谐波的强度来无线监测,因为生物分子改变了频率转换效率专注。如果成功,紧凑而透明的石墨烯谐波生物传感器可以集成在软性隐形眼镜上,以灵敏地检测目标病原体细菌、传染源、疾病或感兴趣的代谢变化,并无线传输数据,无需任何电源或复杂的电路。随着进一步的发展,所提出的无线生物传感器可以在医疗保健监测方面产生广泛的影响。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Compact Hybrid-Fed Microstrip Antenna for Harmonics-Based Radar and Sensor Systems
用于基于谐波的雷达和传感器系统的紧凑型混合馈电微带天线
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pai-Yen Chen其他文献

Pai-Yen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pai-Yen Chen', 18)}}的其他基金

Electromagnetic Physically-Unclonable Functions Generated by Graphene Radio-Frequency Circuits
石墨烯射频电路产生的电磁物理不可克隆功能
  • 批准号:
    2229659
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Electromagnetic Physically-Unclonable Functions Generated by Graphene Radio-Frequency Circuits
石墨烯射频电路产生的电磁物理不可克隆功能
  • 批准号:
    2229659
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Wavelength-Scalable, Room-Temperature Mid-Infrared Photodetectors Based on Multiphoton-Assisted Tunneling
合作研究:基于多光子辅助隧道的波长可扩展、室温中红外光电探测器
  • 批准号:
    2210977
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
I-Corps: Accurate, Contiguous and Portable Wireless Intraocular Contact Lens Pressure Sensors
I-Corps:准确、连续、便携式无线眼内隐形眼镜压力传感器
  • 批准号:
    2001328
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors
用于植入式微传感器的奇偶时间对称无线遥测系统
  • 批准号:
    1917678
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Integrated Research and Education on Self-Activated, Transparent Harmonics-Based Wireless Sensing Systems Using Graphene Bioelectronics
职业:利用石墨烯生物电子学对自激活、透明谐波无线传感系统进行综合研究和教育
  • 批准号:
    1914420
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors
用于植入式微传感器的奇偶时间对称无线遥测系统
  • 批准号:
    1711409
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

融合先验知识和时空动态特征的小样本大豆叶面早期病害图像识别研究
  • 批准号:
    62301287
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
供水管网泄漏的多方特征融合机制及集成化诊断方法研究
  • 批准号:
    52370098
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于多源异构数据融合的航运金融风险评估及管理对策研究
  • 批准号:
    72303024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
知识与数据融合驱动的多工况过程动静态协同监测与故障溯源研究
  • 批准号:
    62303276
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向天基骨干网络的多制式激光链路数据融合理论及实验研究
  • 批准号:
    62301476
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: An Integrated Trustworthy AI Research and Education Framework for Modeling Human Behavior in Climate Disasters
职业生涯:用于模拟气候灾害中人类行为的综合可信人工智能研究和教育框架
  • 批准号:
    2338959
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Identification of Early Metabolomic and Immune Endotypes of Allergy and Asthma: An Integrated Multiomics Approach
过敏和哮喘早期代谢组学和免疫内型的鉴定:综合多组学方法
  • 批准号:
    10896779
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
The Application of a Theoretical Framework to Assess the Acceptability of a Health-Related Social Needs Screening Tool Among Black Patients In New York City
应用理论框架评估纽约市黑人患者对健康相关社会需求筛查工具的接受程度
  • 批准号:
    10826205
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
3/4-The INTEGRATE Study: Evaluating INTEGRATEd Care to Improve Biopsychosocial Outcomes of Early Liver Transplantation for Alcohol-Associated Liver Disease
3/4-综合研究:评估综合护理以改善酒精相关性肝病早期肝移植的生物心理社会结果
  • 批准号:
    10710924
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
  • 批准号:
    10641060
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了