NSF-BSF: Controlling Phase Selectivity and Electrocatalytic Activity of Transition-Metal Dichalcogenide Overlayers in Core-Shell Nanoparticles for CO2 Reduction

NSF-BSF:控制核壳纳米颗粒中过渡金属二硫属化物覆盖层的相选择性和电催化活性,用于 CO2 还原

基本信息

项目摘要

The discovery and optimization of inexpensive catalyst materials is fundamental to fulfilling the urgent need for clean and sustainable sources of energy. In particular, conversion of carbon dioxide (CO2) to valuable chemical feedstocks and fuels, when complemented by renewable sources of energy, offers a promising route for sustainable management of carbon emissions, but the process is currently inefficient due to the lack of suitable catalysts. To address this challenge, this project, funded under the National Science Foundation (NSF) and US-Israel Binational Science Foundation (BSF) collaborative opportunity NSF 17-520, will support investigation of a new class of catalysts that enable the efficient conversion of CO2 to higher-value chemicals and fuels. A team of researchers from the University of Massachusetts Amherst and Ben Gurion University will analyze and evaluate catalysts that are engineered from materials that are abundant in the Earth's crust and inexpensive to process at large scales. The broader societal impacts of this project include recruitment and mentoring of underrepresented minority students at UMass Amherst, and outreach to the communities in Western Massachusetts and Israel. US-Israel scientific collaboration will be enhanced by graduate student exchanges between the partner institutions.Electrochemical reduction of CO2 is a promising avenue for closing the carbon cycle but is stymied at present by the lack of catalysts that are both active and selective at low overpotentials. This project focuses on earth-abundant electrocatalysts, based on semi-metallic phases of the molybdenum (Mo) and tungsten (W) family of layered transition-metal dichalcogenides (TMDCs), with the goal of addressing these demanding catalytic performance requirements. An integrated theory-synthesis-characterization approach facilitates rational design of transition-metal core-TMDC shell nanoparticles in which the electrochemically-active, semi-metallic phases of Mo and W TMDCs are preferentially stabilized over the ground-state, semiconducting phases. In particular, stabilization of the semi-metallic phases does not rely on conventional kinetic trapping approaches, being achieved instead by charge-transfer interactions between the metallic cores and the TMDC shells, which provides a greater degree of robustness against the undesirable semimetal-to-semiconductor phase transition. Fundamental advances in the development of such phase-engineered, core-shell nanoparticles project far-reaching scientific impact in the fields of two-dimensional materials and nanoscale catalysis, while also enabling renewable energy technologies. The research program is integrated with formative research opportunities for undergraduates from minority-serving institutions thereby nurturing the next generation of materials scientists and engineers. Presentations to the students and the broader public in Western Massachusetts and Israel on issues associated with nanotechnology and its applications in renewable energy further extend the impact of this research. US-Israel scientific collaboration will be enhanced by personnel exchanges between partner institutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
廉价催化剂材料的发现和优化对于满足清洁和可持续能源的迫切需求至关重要。特别是,在可再生能源补充的情况下,将二氧化碳(CO2)转换为有价值的化学原料和燃料,为碳排放的可持续管理提供了有希望的途径,但是由于缺乏合适的催化剂,该过程目前效率低下。为了应对这一挑战,该项目由国家科学基金会(NSF)和美国 - 以色列双原则科学基金会(BSF)协作机会NSF 17-520资助,将支持对一类新的催化剂进行调查,从而使CO2有效地转化为高级化学品和高级化学品和燃料。马萨诸塞大学阿默斯特大学和本·古里恩大学的研究人员团队将分析和评估催化剂,这些催化剂是根据地球地壳中丰富且廉价进行大规模处理的材料设计的。该项目的更广泛的社会影响包括在UMass Amherst招募和指导代表性不足的少数族裔学生,以及向马萨诸塞州西部和以色列的社区推广。伙伴机构之间的研究生交流将增强美国 - 以色列的科学合作。二氧化碳的电子化学减少是关闭碳循环的有前途的途径,但目前由于缺乏在低过度势力下具有活跃和选择性的催化剂而受到阻碍。该项目的重点是基于钼(MO)的半金属阶段(MO)和钨(W)分层过渡 - 金属二非核苷(TMDC)家族,目的是解决这些要求的催化性能要求。综合理论合成特征方法促进了过渡金属核心-TMDC壳纳米颗粒的合理设计,其中MO和W TMDC的电化学活性,半金属阶段优先稳定在地面状态,半态,半管阶段。特别是,半金属相的稳定不依赖于常规的动力学捕获方法,而是通过金属核与TMDC壳之间的电荷转移相互作用来实现,从而提供了更大程度的鲁棒性,从而对不受欢迎的半距离半偏见 - - 偏向偏相过渡。这种相相设计的,核心纳米颗粒的开发的基本进步在二维材料和纳米级催化的领域中投射了深远的科学影响,同时还可以实现可再生能源技术。该研究计划与少数派服务机构的大学生的形成性研究机会融为一体,从而培养下一代材料科学家和工程师。在马萨诸塞州西部和以色列的学生和更广泛的公众就与纳米技术相关的问题及其在可再生能源中的应用,进一步扩大了这项研究的影响。合作伙伴机构之间的人员交流将增强美国 - 以色列的科学合作。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Catalysts for the hydrogen evolution reaction in alkaline medium: Configuring a cooperative mechanism at the Ag-Ag2S-MoS2 interface
  • DOI:
    10.1016/j.jechem.2022.07.020
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    13.1
  • 作者:
    Avner Bar-Hen;S. Hettler;A. Ramasubramaniam;R. Arenal;R. Ziv;M. Sadan
  • 通讯作者:
    Avner Bar-Hen;S. Hettler;A. Ramasubramaniam;R. Arenal;R. Ziv;M. Sadan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashwin Ramasubramaniam其他文献

Ashwin Ramasubramaniam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashwin Ramasubramaniam', 18)}}的其他基金

Collaborative Research: EAGER: Insights into the Hydrogen Evolution Reaction of Transition Metal Dichalcogenide Nanocrystals by In-situ Electron Paramagnetic Resonance Spectroscopy
合作研究:EAGER:通过原位电子顺磁共振波谱洞察过渡金属二硫族化物纳米晶体的析氢反应
  • 批准号:
    2302783
  • 财政年份:
    2023
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: On-Chip High-Resolution Mid-Infrared Spectroscopy with a Single Tunable van der Waals Heterostructure Photodetector
合作研究:NSF-BSF:具有单个可调谐范德华异质结构光电探测器的片上高分辨率中红外光谱仪
  • 批准号:
    2150562
  • 财政年份:
    2022
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Standard Grant
NSF-BSF: The Hard-Soft Interface -- Integrating 2D Semiconductors with Functional Polymers for Nanoscale Optoelectronics
NSF-BSF:硬-软接口——将二维半导体与功能聚合物集成以实现纳米级光电子学
  • 批准号:
    1808011
  • 财政年份:
    2018
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Continuing Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了