CAREER: Advances in Graph Learning and Inference

职业:图学习和推理的进展

基本信息

  • 批准号:
    1750920
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-02-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Graph-based data processing algorithms impact a variety of application domains ranging from transportation networks, artificial intelligence systems, cellphone networks, social networks, and the Web. Nevertheless, the emergent big-data era poses key conceptual challenges: several existing graph-based methods used in practice exhibit unreasonably high running time; several other methods operate in the absence of correctness guarantees. These challenges severely imperil the safety and reliability of higher-level decision-making systems of which they are a part. This research introduces an innovative new computational framework for graph learning and inference that addresses these challenges. Specific applications studied in this project include: better approaches for monitoring roadway congestion and identify traffic incidents in a timely manner; root-cause analysis of complex events in social networks; and design of better personalized learning systems, lowering educational costs and increasing quality nationwide. Activities include integrated programs to increase participation of women and under-represented minorities in the computational sciences. From a technical standpoint, the investigator pursues three research themes: (i) designing scalable non-convex algorithms for learning the edges (and weights) of an unknown graph given a sequence of independent static and/or time-varying local measurements; (ii) designing new approximation algorithms for utilizing the structure of a given graph to enable scalable post-hoc decision making in complex systems; (iii) developing provable algorithms for training special families of artificial neural networks, and filling gaps between rigorous theory and practice of neural network learning. Progress in each of the above themes will be extensively evaluated using real-world data from engineering applications including social network data, highway monitoring data, and fluid-flow simulation data. Collaborations with domain experts in each of these application areas will ensure that the new theory, tools, and software emerging from this project will lead to meaningful societal benefits.
基于图的数据处理算法影响着交通网络、人工智能系统、手机网络、社交网络和网络等各种应用领域。然而,新兴的大数据时代带来了关键的概念挑战:实践中使用的几种现有的基于图的方法表现出不合理的高运行时间;其他几种方法在缺乏正确性保证的情况下运行。这些挑战严重危及它们所属的高层决策系统的安全性和可靠性。这项研究引入了一种用于图学习和推理的创新计算框架,可以解决这些挑战。该项目研究的具体应用包括:更好的方法来监控道路拥堵并及时识别交通事件;社交网络中复杂事件的根本原因分析;设计更好的个性化学习系统,降低教育成本并提高全国范围内的质量。活动包括提高妇女和代表性不足的少数群体对计算科学的参与的综合计划。从技术角度来看,研究者追求三个研究主题:(i)设计可扩展的非凸算法,用于在给定一系列独立静态和/或时变局部测量的情况下学习未知图的边缘(和权重); (ii) 设计新的近似算法,利用给定图的结构来实现复杂系统中可扩展的事后决策; (iii) 开发可证明的算法来训练特殊的人工神经网络系列,并填补神经网络学习的严格理论与实践之间的空白。上述每个主题的进展将使用来自工程应用的真实数据进行广泛评估,包括社交网络数据、高速公路监测数据和流体流动模拟数据。与每个应用领域的领域专家的合作将确保该项目中出现的新理论、工具和软件将带来有意义的社会效益。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Low-Rank Matrix Estimation for Ill-Conditioned Matrices
病态矩阵的快速低秩矩阵估计
Towards Sample-Optimal Methods for Solving Random Quadratic Equations with Structure
求解具有结构的随机二次方程的样本最优方法
On Learning Sparsely Used Dictionaries from Incomplete Samples
从不完整样本中学习稀疏使用词典
Phase Retrieval for Signals in Unions of Subspaces
子空间并集中信号的相位检索
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chinmay Hegde其他文献

Exploring Dataset-Scale Indicators of Data Quality
探索数据集规模的数据质量指标
  • DOI:
    10.48550/arxiv.2311.04016
  • 发表时间:
    2023-11-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ben Feuer;Chinmay Hegde
  • 通讯作者:
    Chinmay Hegde
Arboretum: A Large Multimodal Dataset Enabling AI for Biodiversity
Arboretum:一个大型多模式数据集,支持人工智能促进生物多样性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chih;Ben Feuer;Zaki Jubery;Zi K. Deng;Andre Nakkab;Md Zahid Hasan;Shivani Chiranjeevi;Kelly O. Marshall;Nirmal Baishnab;Asheesh K. Singh;Arti Singh;Soumik Sarkar;Nirav C. Merchant;Chinmay Hegde;B. Ganapathysubramanian
  • 通讯作者:
    B. Ganapathysubramanian
TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks
TuneTables:可扩展先验数据拟合网络的上下文优化
  • DOI:
    10.48550/arxiv.2402.11137
  • 发表时间:
    2024-02-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ben Feuer;R. Schirrmeister;Valeriia Cherepanova;Chinmay Hegde;Frank Hutter;Micah Goldblum;Niv Cohen;Colin White
  • 通讯作者:
    Colin White
Towards Foundational AI Models for Additive Manufacturing: Language Models for G-Code Debugging, Manipulation, and Comprehension
迈向增材制造的基础 AI 模型:用于 G 代码调试、操作和理解的语言模型
  • DOI:
    10.48550/arxiv.2309.02465
  • 发表时间:
    2023-09-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anushrut Jignasu;Kelly O. Marshall;B. Ganapathysubramanian;Aditya Balu;Chinmay Hegde;A. Krishnamurthy
  • 通讯作者:
    A. Krishnamurthy
Agnostic Active Learning of Single Index Models with Linear Sample Complexity
具有线性样本复杂度的单指标模型的不可知主动学习

Chinmay Hegde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chinmay Hegde', 18)}}的其他基金

EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: An Incident-Response Approach for Empowering Fact-Checkers
协作研究:SaTC:核心:媒介:增强事实检查人员能力的事件响应方法
  • 批准号:
    2154119
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: Advances in Graph Learning and Inference
职业:图学习和推理的进展
  • 批准号:
    2005804
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
CRII: CIF: Towards Linear-Time Computation of Structured Data Representations
CRII:CIF:走向结构化数据表示的线性时间计算
  • 批准号:
    1566281
  • 财政年份:
    2016
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

靶向VEGFR2增强放疗-免疫检查点抑制剂联合介导的远隔效应抑制肿瘤进展的机制研究
  • 批准号:
    82360580
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
NLK-FoxO1-GPX4信号轴调控软骨细胞铁死亡促进颞下颌关节骨关节炎进展的机制研究
  • 批准号:
    82301113
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
赖氨酸甲基转移酶SMYD3通过甲基化LIG4促进子宫内膜癌进展的机制研究
  • 批准号:
    82303650
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
DNA甲基转移酶DNMT3A与RNA结合蛋白RBM47通过调控GSTA1表达参与胶质瘤进展作用机制探讨
  • 批准号:
    82360475
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
IL-17下调内皮细胞PD-L1促进大动脉炎管壁炎症持续进展的机制研究
  • 批准号:
    82302014
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fetal Programming of Human Newborn Energy Homeostasis Brain Networks
人类新生儿能量稳态大脑网络的胎儿编程
  • 批准号:
    10758984
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
Neural dynamics and substrates of graphical knowledge
神经动力学和图形知识的基础
  • 批准号:
    10487519
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
Neural dynamics and substrates of graphical knowledge
神经动力学和图形知识的基础
  • 批准号:
    10371663
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
Fetal Programming of Human Newborn Energy Homeostasis Brain Networks and Infant Adiposity
人类新生儿能量稳态大脑网络和婴儿肥胖的胎儿编程
  • 批准号:
    10022151
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
CAREER: Advances in Graph Learning and Inference
职业:图学习和推理的进展
  • 批准号:
    2005804
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了