CAREER: Multi-Objective Optimization of Sensor Placement for Reliable Monitoring and Control of Structures

职业:多目标优化传感器放置以实现结构的可靠监测和控制

基本信息

  • 批准号:
    1750225
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development Program (CAREER) grant aims to sustain the long-term performance of civil infrastructure by identifying the most effective measurement types and locations for monitoring and isolating structural response. Continued performance of civil structures in daily use and after a natural hazard event is critical to the resilience of our communities and the US economy. The integration of sensor networks and physical systems is essential for maintaining this continued performance of civil structures while facing challenges in aging, energy, and the environment. The interaction of these cyber-physical components impacts almost every endeavor today and is indispensable in tackling today's broader challenges and continued US economic growth. This research project will identify optimal network systems for infrastructure applications through the integration of virtual and physical sensors and actuators. Unlike current approaches that are limited to specific measurement technology, function, and/or application, the new network approach is scalable to monitor large structures, as well as to provide insight on performance limits and maximize the reliability of the selected network configuration. Experimental modules will be developed based on the framework of this research through student's design projects and will be used to create an interactive outreach platform for students in secondary school.Effective implementation of sensor and actuator networks necessitates that limited sensor resources provide the most informative measured data and are reliable in the face of uncertainties. The objective of this research is a framework to identify the bounds of algorithm performance for structural health monitoring and control applications through optimization of sensor placement, type, and configuration in the presence of uncertainties. The multi-objective optimization sensor approach will be validated with results from physical tests ranging from laboratory-scale monitoring and control experiments through in-situ deployments. Key results include: (i) a sparsity-promoting algorithm to determine near-optimal sensor requirements for effective response and parameter estimation, (ii) insight into the performance bounds for estimation-based algorithms, and (iii) a novel experimental approach for validation of the technique under repeated, non-idealized conditions to establish the reliability of estimation-based approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展计划(CAREER)赠款旨在通过确定用于监测和隔离结构响应的最有效的测量类型和位置来维持土木基础设施的长期性能。 土木结构在日常使用中和自然灾害事件后的持续性能对于我们社区和美国经济的恢复能力至关重要。传感器网络和物理系统的集成对于在面临老化、能源和环境挑战的同时保持土木结构的持续性能至关重要。这些网络物理组件的相互作用几乎影响着当今的每一项努力,并且对于应对当今更广泛的挑战和持续的美国经济增长是不可或缺的。该研究项目将通过集成虚拟和物理传感器和执行器来确定基础设施应用的最佳网络系统。与仅限于特定测量技术、功能和/或应用的当前方法不同,新的网络方法可扩展以监控大型结构,并提供对性能限制的洞察并最大限度地提高所选网络配置的可靠性。实验模块将基于本研究的框架,通过学生的设计项目进行开发,并将用于为中学生创建一个互动推广平台。传感器和执行器网络的有效实施需要有限的传感器资源提供最丰富的测量数据。并且在面对不确定性时是可靠的。本研究的目标是建立一个框架,通过在存在不确定性的情况下优化传感器放置、类型和配置来确定结构健康监测和控制应用的算法性能界限。多目标优化传感器方法将通过从实验室规模监测和控制实验到现场部署的物理测试结果进行验证。主要结果包括:(i) 一种稀疏性促进算法,用于确定有效响应和参数估计的接近最佳传感器要求,(ii) 深入了解基于估计的算法的性能范围,以及 (iii) 一种新颖的验证实验方法该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of Networked Structural Control With Packet Loss
丢包的网络结构控制分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lauren Linderman其他文献

Lauren Linderman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于人类多元感知特性的全景图像质量客观评价理论与方法
  • 批准号:
    61901205
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于人工智能与多模态MRI技术的慢性腰背痛脑机制、客观评估和疗效预测研究
  • 批准号:
    81971694
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
刺激频率耳声发射对听觉功能频率选择特性的客观检测研究
  • 批准号:
    61271133
  • 批准年份:
    2012
  • 资助金额:
    76.0 万元
  • 项目类别:
    面上项目
基于3维多尺度复变换的多传感器视频图像融合及性能客观评价研究
  • 批准号:
    61104212
  • 批准年份:
    2011
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于多光谱舌下图像的舌下络脉诊法客观化研究
  • 批准号:
    61102037
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Time-Aware Multi-Objective Recommendation in Online Learning Environments
职业:在线学习环境中的时间感知多目标推荐
  • 批准号:
    2047500
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Robust Identification and Multi-Objective Control Methods for Neuronal Networks Under Uncertainty
职业:不确定性下神经网络的鲁棒识别和多目标控制方法
  • 批准号:
    1845348
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Multi-Objective Optimization via Simulation: Theory, Methods, and Parallel Computation
职业:通过仿真进行多目标优化:理论、方法和并行计算
  • 批准号:
    1554144
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: A Performance-Based Multi-Objective Optimization Framework to Define Innovative Structural Concepts and Support the Seismic Design of Critical Buildings
职业生涯:基于性能的多目标优化框架,用于定义创新结构概念并支持关键建筑的抗震设计
  • 批准号:
    1351591
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Enhancing Conceptual Design Using Multi-Objective, Dynamically Encoded Genetic Algorithms to Optimize Structural Toplogy, Geometry, and Size
职业:使用多目标动态编码遗传算法增强概念设计,以优化结构拓扑、几何形状和尺寸
  • 批准号:
    0738618
  • 财政年份:
    2006
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了