Phase 1 IUCRC Rutgers-New Brunswick: Center for Accelerated Real Time Analytics (CARTA)

第一阶段 IUCRC 罗格斯-新不伦瑞克:加速实时分析中心 (CARTA)

基本信息

  • 批准号:
    1747778
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Nearly every research field and industry sector is struggling with extracting useful information from massive and dynamic data in a timely way. Developing tools and technologies in this realm of real-time and accelerated analytics contributes to promoting the progress of science and to advancing the national prosperity and welfare. Success in this realm hinges on balancing fundamental research, technological know-how, and commercial market intelligence. To address this challenge, this project joins industry members with academic centers to conduct multidisciplinary science and research towards extracting value from massive and moving data and enabling better decision making of complex, dynamic data.The Center of Accelerated Real Time Analytics (CARTA) project explores the ways in which relatively-high-risk fundamental developments can be leveraged to help organizations that have longer-term, more complex analytic needs. The focus of CARTA is on horizontal foundational technologies that would create an infrastructure capable of powering applications of national significance. In this context, at Rutgers-New Brunswick (RU-NB), the CARTA/RU-NB site will enable new application domains through innovative machine learning, statistical, modeling methods and technologies for accelerated and real-time analytics. Having these technologies and tools will be key in achieving the goals of the overall CARTA center. The broader impact of the work of the CARTA center will be in addressing the future advanced, real-time analytics needs of the industry and society. The techniques developed by CARTA can be applied across industry sectors, including national security, healthcare, manufacturing, energy, and business intelligence. The fundamental research done at CARTA will be translated into technology developments, delivering practical solutions to hard problems. The ultimate success of this paradigm shift by the analytics industry will rest on the ability of CARTA universities to prepare experts to take advantage of the science and technologies to solve a variety of real-life applications. CARTA research may involve sensitive academic and industrial data along with public domain data. This data and resulting research outputs will be maintained using appropriate best practices for each type of data for a period of three years after the closing of CARTA. A central repository, suitably tagged for appropriate referencing and documentation, will be set up at https://carta.umbc.edu for maintaining the acquired and generated data from Center projects. Access to all models and project results will be stored on line and made available for downloading in near real time to respond to approved user requests.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几乎每个研究领域和行业部门都在努力从海量动态数据中及时提取有用信息。在实时和加速分析领域开发工具和技术有助于促进科学进步并促进国家繁荣和福利。这一领域的成功取决于平衡基础研究、技术知识和商业市场情报。为了应对这一挑战,该项目联合行业成员和学术中心开展多学科科学研究,旨在从海量移动数据中提取价值,并能够对复杂的动态数据做出更好的决策。加速实时分析中心 (CARTA) 项目探索如何利用相对高风险的基本面发展来帮助具有长期、更复杂分析需求的组织。 CARTA 的重点是横向基础技术,这些技术将创建能够为具有国家意义的应用程序提供动力的基础设施。在此背景下,罗格斯大学新不伦瑞克分校 (RU-NB) 的 CARTA/RU-NB 站点将通过创新的机器学习、统计、建模方法和技术来实现新的应用领域,以实现加速和实时分析。拥有这些技术和工具将是实现整个 CARTA 中心目标的关键。 CARTA 中心工作的更广泛影响将在于满足行业和社会未来先进的实时分析需求。 CARTA 开发的技术可应用于各个行业领域,包括国家安全、医疗保健、制造、能源和商业智能。 CARTA 所做的基础研究将转化为技术开发,为难题提供实用的解决方案。分析行业这一范式转变的最终成功将取决于 CARTA 大学培养专家利用科学和技术解决各种现实应用的能力。 CARTA 研究可能涉及敏感的学术和工业数据以及公共领域数据。 这些数据和由此产生的研究成果将在 CARTA 结束后三年内使用每种类型数据的适当最佳实践进行维护。将在 https://carta.umbc.edu 建立一个中央存储库,并适当标记以供适当的参考和文档,用于维护从中心项目获取和生成的数据。对所有模型和项目结果的访问将在线存储并可供近实时下载,以响应批准的用户请求。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持影响审查标准。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Attentive Neural Cell Instance Segmentation
专注的神经细胞实例分割
  • DOI:
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Yi, J.;Wu, P.;Jiang, M.;Huang, Q.;Hoeppner, D. J.;Metaxas, D.
  • 通讯作者:
    Metaxas, D.
Genetic mutation and biological pathway prediction based on whole slide images in breast carcinoma using deep learning
基于深度学习的乳腺癌全切片图像的基因突变和生物通路预测
  • DOI:
    10.1038/s41698-021-00225-9
  • 发表时间:
    2021-09-23
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Qu H;Zhou M;Yan Z;Wang H;Rustgi VK;Zhang S;Gevaert O;Metaxas DN
  • 通讯作者:
    Metaxas DN
CONTEXT-REFINED NEURAL CELL INSTANCE SEGMENTATION
上下文细化的神经细胞实例分割
JOINT SEGMENTATION AND FINE-GRAINED CLASSIFICATION OF NUCLEI IN HISTOPATHOLOGY IMAGES
组织病理学图像中细胞核的联合分割和细粒度分类
Interactive Architectural Design with Diverse Solution Exploration
互动架构设计与多元化解决方案探索
  • DOI:
    10.1109/tvcg.2019.2938961
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Berseth, Glen;Haworth, Brandon;Usman, Muhammad;Schaumann, Davide;Khayatkhoei, Mahyar;Kapadia, Mubbasir Turab;Faloutsos, Petros
  • 通讯作者:
    Faloutsos, Petros
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitris Metaxas其他文献

BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models
  • DOI:
  • 发表时间:
    2024-06-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yibin Wang;Haizhou Shi;Ligong Han;Dimitris Metaxas;Hao Wang
  • 通讯作者:
    Hao Wang
The Traffic Calming Effect of Delineated Bicycle Lanes
划定自行车道的交通平静效果
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hannah Younes;Clinton Andrews;Robert B. Noland;Jiahao Xia;Song Wen;Wenwen Zhang;Dimitris Metaxas;Leigh Ann Von Hagen;Jie Gong
  • 通讯作者:
    Jie Gong
ASL Recognition Based on a Coupling Between HMMs and 3 D Motion Analysis
基于 HMM 和 3D 运动分析耦合的 ASL 识别
Multi-Stage Feature Fusion Network for Video Super-Resolution
用于视频超分辨率的多级特征融合网络
  • DOI:
    10.1109/tip.2021.3056868
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Huihui Song;Wenjie Xu;Dong Liu;Bo Liu;Qingshan Liu;Dimitris Metaxas
  • 通讯作者:
    Dimitris Metaxas
Improving Compositional Text-to-image Generation with Large Vision-Language Models
使用大型视觉语言模型改进组合文本到图像的生成
  • DOI:
    10.48550/arxiv.2310.06311
  • 发表时间:
    2023-10-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Song Wen;Guian Fang;Renrui Zhang;Peng Gao;Hao Dong;Dimitris Metaxas
  • 通讯作者:
    Dimitris Metaxas

Dimitris Metaxas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitris Metaxas', 18)}}的其他基金

Center: IUCRC Phase II Rutgers University: Center for Accelerated and Real Time Analytics (CARTA)
中心:IUCRC 第二阶段 罗格斯大学:加速和实时分析中心 (CARTA)
  • 批准号:
    2310966
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track H: AI-based Tools to Enhance Access and Opportunities for the Deaf
NSF 融合加速器轨道 H:基于人工智能的工具,增强聋人的获取和机会
  • 批准号:
    2235405
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Linguistically-Driven Sign Recognition from Continuous Signing for American Sign Language (ASL)
合作研究:HCC:媒介:美国手语 (ASL) 连续手语中语言驱动的手语识别
  • 批准号:
    2212301
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track D: Data & AI Methods for Modeling Facial Expressions in Language with Applications to Privacy for the Deaf, ASL Education & Linguistic Res
NSF 融合加速器轨道 D:数据
  • 批准号:
    2040638
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Scalable Integration of Data-Driven and Model-Based Methods for Large Vocabulary Sign Recognition and Search
CHS:中:协作研究:用于大词汇量符号识别和搜索的数据驱动和基于模型的方法的可扩展集成
  • 批准号:
    1763523
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CHS: Medium: Data Driven Biomechanically Accurate Modeling of Human Gait on Unconstrained Terrain
CHS:中:数据驱动的无约束地形上人类步态的生物力学精确建模
  • 批准号:
    1703883
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    1733843
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Data Visualizations for Linguistically Annotated, Publicly Shared, Video Corpora for American Sign Language (ASL)
EAGER:协作研究:美国手语 (ASL) 语言注释、公开共享视频语料库的数据可视化
  • 批准号:
    1748022
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Quickest Change Detection Techniques with Signal Processing Applications
CIF:媒介:协作研究:信号处理应用的最快变化检测技术
  • 批准号:
    1513373
  • 财政年份:
    2015
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
EAGER: Multi-modal human gait experimentation and analysis on unconstrained terrains
EAGER:无约束地形上的多模式人类步态实验和分析
  • 批准号:
    1451292
  • 财政年份:
    2014
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似海外基金

IUCRC Planning Grant University of Houston: Center for Visual Structural Expertise for Resilience (C-ViSER)
IUCRC 规划拨款 休斯顿大学:复原力视觉结构专业知识中心 (C-ViSER)
  • 批准号:
    2311019
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
IUCRC Phase III University of Southern Mississippi Center for Science Center for Marine Fisheries (SCEMFIS)
IUCRC 第三阶段 南密西西比大学海洋渔业科学中心 (SCEMFIS)
  • 批准号:
    2332982
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
IUCRC Planning Grant Duke University: Center for Innovation in Risk-analysis for Climate Adaptation and Decision-making (CIRCAD)
IUCRC 规划资助 杜克大学:气候适应和决策风险分析创新中心 (CIRCAD)
  • 批准号:
    2413267
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
IUCRC Phase I University of Wisconsin-Milwaukee: Center for Concrete Advancement Network (CAN), Lead Site
IUCRC 第一阶段威斯康星大学密尔沃基分校:混凝土进步网络中心 (CAN),主要站点
  • 批准号:
    2310861
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
IUCRC Phase II UMBC: Building Reliable Advances and Innovation in Neurotechnology (BRAIN)
IUCRC 第二期 UMBC:在神经技术 (BRAIN) 领域建立可靠的进步和创新
  • 批准号:
    2333292
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了