Geometric Properties of Fractals That Arise in Various Dynamical Settings

各种动态环境中出现的分形的几何性质

基本信息

  • 批准号:
    1800180
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-15 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The main goal of this project is to study various forms of symmetry. People have been fascinated with the symmetry phenomenon since ancient times and the examples can easily be found in visual arts, in particular architecture, poetry and music. Typically, the symmetry in these examples is either mirror, i.e., the objects are doubled across a flat surface, or translational when a pattern is repeated in space or time intervals of the same size. Nature is also abundant with symmetries. The most widely recognized examples are lightning, fern, and cauliflower or broccoli. The symmetry here is of a different type, namely it is self-similarity, and objects that possess such symmetries are called fractals. Fractals are roughly the same on different scales, i.e., parts of a fractal look like smaller copies of the whole fractal. This project studies geometric spaces that possess the above symmetries and generalizations of such symmetries, e.g., quasi-self-similarities. More specifically, this project investigates dynamical properties and curvature distribution of fractal spaces that support dynamical systems. Here dynamics typically refers to the iteration of a map or a system of maps on a given fractal. More precisely, the PI plans to classify fractal spaces from various families according to their quasisymmetry groups, quasiregular dynamics that they support, or the asymptotics of the curvature distribution function of the packings associated to such fractals. The project concerns mainly fractals that are the Julia sets of postcritically finite rational maps or residual sets of various self-similar constructions, such as Apollonian gaskets. The methods to be employed come from dynamics of groups and rational maps, and from complex analysis as well as its more recent counterparts. For example, recent developments have shown that many fractal spaces can be effectively studied using combinatorial tools and techniques of analysis on metric spaces. Moreover, geometry of dynamical fractals influences certain analytic properties of packings associated to such fractals. E.g., the asymptotics of the curvature distribution function of various dynamical packings is related to the fractal dimension of the corresponding residual sets. It is the hope of the PI that the project would add new methods and ideas that, in particular, would shed more light onto the relationship of these fields, namely geometry, dynamics, and curvature distribution of associated packings. Complex analysis has often provided tools and methods for solving problems that come from natural sciences, engineering, and other fields of mathematics. Recent examples related to physics include the investigation of the conformal invariance of continuum limits of two-dimensional lattice models in statistical physics and applications to quantum gravity. The PI expects that his investigations would reveal additional geometric and other properties of fractals that arise, in particular, in natural sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要目标是研究各种形式的对称性。自从远古时代以来,人们一直对这种对称现象着迷,并且可以轻松地在视觉艺术,尤其是建筑,诗歌和音乐中找到这些例子。通常,这些示例中的对称性是镜像,即,当对象在平坦的表面上加倍,或者当在相同大小的空间或时间间隔中重复图案时转换。自然也有对称性丰富。最广泛认可的例子是闪电,蕨类植物和花椰菜或西兰花。这里的对称性是一种不同的类型,即它是自相似性,并且具有这种对称性的对象称为分形。分形在不同的尺度上大致相同,即分形的部分看起来像整个分形的较小拷贝。该项目研究具有上述对称性的几何空间,例如准自我相似性。更具体地说,该项目研究了支持动态系统的分形空间的动力学特性和曲率分布。这里的动力学通常是指给定分形上地图或地图系统的迭代。更准确地说,PI计划根据其支持组,它们支持的准对象动力学或与此类分形相关的包装的曲率分布函数的渐近分布式分类。该项目主要涉及分形,这些分形是朱莉娅(Julia)的朱莉娅(Julia)批判性有限的理性地图或各种自相似结构(例如阿波罗尼亚垫片)的残差集。要采用的方法来自组和理性图的动力学,复杂的分析以及其最新的对应物。例如,最近的事态发展表明,可以使用组合工具和公制空间分析技术有效地研究许多分形空间。此外,动态分形的几何形状会影响与此类分形相关的包装的某些分析特性。例如,各种动力包装的曲率分布函数的渐近分数与相应残差集的分形维度有关。 PI的希望是,该项目将添加新的方法和想法,尤其会给这些领域的关系提供更多的启示,即几何,动态和相关包装的曲率分布。复杂的分析通常提供了解决来自自然科学,工程和其他数学领域的问题的工具和方法。与物理学有关的最新示例包括研究统计物理学和量子重力应用中二维晶格模型的连续性限制的共形不变性。 PI预计他的调查将揭示出尤其是在自然科学中出现的分形的其他几何和其他特性。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子的评估来获得支持的,并具有更广泛的影响。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On dynamical gaskets generated by rational maps, Kleinian groups, and Schwarz reflections
Square Sierpiński carpets and Lattès maps
方形 SierpiÅ 滑雪地毯和 Lattès 地图
  • DOI:
    10.1007/s00209-019-02435-1
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Bonk, Mario;Merenkov, Sergei
  • 通讯作者:
    Merenkov, Sergei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergiy Merenkov其他文献

Sergiy Merenkov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergiy Merenkov', 18)}}的其他基金

Uniformization of non-uniform geometries
非均匀几何形状的均匀化
  • 批准号:
    2247364
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Quasisymmetric deformations of topologically planar fractal spaces
拓扑平面分形空间的拟对称变形
  • 批准号:
    1001144
  • 财政年份:
    2010
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Uniformization and Rigidity of Sierpinski Carpets and Schottky Sets
谢尔宾斯基地毯和肖特基集的均匀化和刚性
  • 批准号:
    0653439
  • 财政年份:
    2007
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Determining Analytic Properties of Maps from Non-Analytic Data
从非分析数据确定地图的分析属性
  • 批准号:
    0703617
  • 财政年份:
    2006
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Determining Analytic Properties of Maps from Non-Analytic Data
从非分析数据确定地图的分析属性
  • 批准号:
    0400636
  • 财政年份:
    2004
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似国自然基金

海上风力机漂浮式平台分形与仿生新构型及动力学耦合特性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
海上风力机漂浮式平台分形与仿生新构型及动力学耦合特性研究
  • 批准号:
    52106262
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于随机分形理论的再生混凝土介质传输特性与机制
  • 批准号:
    52108235
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
可压缩湍流多重分形与统计特性的理论和数值研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    195 万元
  • 项目类别:
基于随机分形理论的再生混凝土介质传输特性与机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nonlocal regularity for a geometric heat flow with fractional integral operator
具有分数积分算子的几何热流的非局部正则性
  • 批准号:
    21K03330
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regularity for doubly nonlinear degenerate and singular parabolic equations and a geometric flow
双非线性简并和奇异抛物线方程和几何流的正则性
  • 批准号:
    18K03375
  • 财政年份:
    2018
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments and applications of geometric singularity theory
几何奇点理论的发展与应用
  • 批准号:
    15H03615
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Geometric studies on singularity of non-linear phenomena
非线性现象奇点的几何研究
  • 批准号:
    26287009
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Geometric triangulated category and associated primitive forms
几何三角范畴和相关的原始形式
  • 批准号:
    25247004
  • 财政年份:
    2013
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了