Characterizing Structures and Intra-/Intermolecular Forces in Molecular CO2 Reduction Catalysts and Reaction Intermediates by Infrared Spectroscopy of Cryogenic Ions

通过低温离子红外光谱表征分子 CO2 还原催化剂和反应中间体的结构和分子内/分子间力

基本信息

  • 批准号:
    1764191
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The generation of a carbon-neutral, sustainable energy economy has been recognized by many as one of the most important new technologies to be developed in the near future. The conversion of carbon dioxide (CO2) into chemically useable fuels is a promising approach to attain this goal. Such processes are difficult to implement, and they need to be assisted by catalysts, i.e., by molecules or materials that lower the energy required to convert CO2 into fuel. In order to develop cost-effective catalysts, we need to understand how CO2 interacts with catalyst molecules. In this project funded by the Chemical Structure Dynamics and Mechanism (CSDM-A) program of the Chemistry Division, Professor J. Mathias Weber of the University of Colorado at Boulder is using a state-of-the-art combination of mass spectrometric and laser spectroscopy techniques to study the interactions of CO2 with catalyst molecules. The catalysts of interest are molecules that contain metals such as cobalt (Co) and rhenium (Re) surrounded by structures containing other elements (for example carbon (C) , oxygen (O), nitrogen (N)). The surrounding structures influence how CO2 binds to the metal atom (key catalytic processes originate in the CO2-metal atom interaction). These metal catalyst "complexes" are ionic (they possess electric charge), which means they can be sorted and concentrated using a mass spectrometer. The desired ionic catalyst complexes are cooled to very low temperatures (as low as 5 degrees Kelvin (K), or minus 450 degrees Fahrenheit). At these low temperatures, CO2 molecules bind to the catalyst complexes. Once the CO2-metal complexes are formed, infrared laser light is used to measure the vibrations of these complexes. From the vibrations, the structures of the complexes can be inferred. This approach enables probing key steps in their reactions, allowing the assembly of detailed mechanisms of how the catalysts function. The broader impacts of this work include potential societal benefits towards the development of new sources of chemical fuels with low environmental impact, as well as the training of graduate student researchers in advanced experimental and computational techniques. Moreover, the Weber group is developing a web-based simulation of carbon dioxide conversion, transporting the laboratory research into the classroom, with the aim to enhance student understanding of catalysis. In this project, the Weber group characterizes the infrared spectra of molecular catalysts for the conversion of carbon dioxide, as well as other species relevant for the catalytic cycle involving such catalysts. The catalysts under study are charged molecules (ions), generated by electrospray ionization. Their complexes with carbon dioxide, proton donors, and solvents are prepared in a series of temperature-controlled ion traps, and isolated in a time-of-flight mass spectrometer. The target molecules are irradiated with pulsed light from a tunable infrared light source. They fragment upon photon absorption, and the fragments are detected in a second mass analysis step. The vibrational spectra of the complexes under study are measured by monitoring fragments while tuning the infrared wavelength. The spectra yield information on the structures and intermolecular forces governing the function of the catalysts. Together with quantum chemical calculations, the spectra provide mechanistic insight into the chemistry at play in electrochemical conversion of carbon dioxide into other, more valuable molecules.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多人认为,在不久的将来开发的最重要的新技术之一已将碳中性的,可持续的能源经济产生的产生。将二氧化碳(CO2)转化为化学可用的燃料是实现这一目标的一种有前途的方法。这样的过程很难实施,需要由催化剂(即通过降低将CO2转换为燃料所需的能量的分子或材料)来协助它们。为了开发具有成本效益的催化剂,我们需要了解CO2如何与催化剂分子相互作用。 在该项目由化学部门的化学结构动力学和机制(CSDM-A)计划资助的项目中,科罗拉多大学博尔德大学的J. Mathias Weber教授正在使用质谱和激光的最先进组合研究CO2与催化剂分子的相互作用的光谱技术。 感兴趣的催化剂是包含金属(例如钴(CO)和rhenium(Re))的分子,这些金属被包含其他元素的结构(例如碳(C),氧(O),氮(N))所包围。 周围的结构影响二氧化碳与金属原子的结合方式(关键催化过程起源于二氧化碳原子相互作用)。 这些金属催化剂“复合物”是离子(它们具有电荷),这意味着可以使用质谱仪对它们进行分类和浓缩。 所需的离子催化剂复合物冷却至非常低的温度(低至5度开尔文(K)或减去450华氏度)。 在这些低温下,二氧化碳分子与催化剂复合物结合。 一旦形成了二氧化碳 - 金属络合物,红外激光将用于测量这些复合物的振动。 从振动中,可以推断出复合物的结构。这种方法可以探测其反应中的关键步骤,从而允许组装催化剂的详细机制。这项工作的更广泛影响包括对具有低环境影响的新化学燃料来源的潜在社会利益,以及对高级实验和计算技术研究生研究人员的培训。此外,Weber Group正在开发基于网络的二氧化碳转换的模拟,将实验室研究运送到课堂上,以增强学生对催化的理解。在这个项目中,韦伯组表征了分子催化剂的红外光谱,用于转化二氧化碳,以及与涉及此类催化剂的催化循环相关的其他物种。所研究的催化剂是通过电喷雾电离产生的充电分子(离子)。它们用二氧化碳,质子供体和溶剂的配合物在一系列温度控制的离子陷阱中制备,并在飞行时间质谱仪中分离。靶分子用可调红外光源的脉冲光照射。它们在吸收光子时碎片,并在第二个质量分析步骤中检测到碎片。研究中的复合物的振动光谱是通过在调整红外波长时监测片段来测量的。光谱在控制催化剂功能的结构和分子间力上产生信息。连同量子化学计算,该光谱在二氧化碳转化为其他更有价值的分子中的电化学转化时提供了机械洞察力。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和知识分子的优点和评估来支持的。更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Formate Binding to a Bipyridine-Based Cobalt-4N Complex
  • DOI:
    10.1021/acs.jpca.1c06037
  • 发表时间:
    2021-08-16
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Foreman, Madison M.;Hirsch, Rebecca J.;Weber, J. Mathias
  • 通讯作者:
    Weber, J. Mathias
Intrinsic Structure and Electronic Spectrum of Deprotonated Biliverdin: Cryogenic Ion Spectroscopy and Ion Mobility
去质子化胆绿素的本质结构和电子能谱:低温离子能谱和离子淌度
  • DOI:
    10.1021/jacs.1c08701
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Zagorec-Marks, Wyatt;Dodson, Leah G.;Weis, Patrick;Schneider, Erik K.;Kappes, Manfred M.;Weber, J. Mathias
  • 通讯作者:
    Weber, J. Mathias
Cryogenic Ion Spectroscopy of the Green Fluorescent Protein Chromophore in Vacuo
真空中绿色荧光蛋白发色团的低温离子光谱
  • DOI:
    10.1021/acs.jpclett.9b02916
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zagorec-Marks, Wyatt;Foreman, Madison M.;Verlet, Jan R.;Weber, J. Mathias
  • 通讯作者:
    Weber, J. Mathias
Ion Binding Site Structure and the Role of Water in Alkaline Earth EDTA Complexes
  • DOI:
    10.1021/acs.jpclett.2c02391
  • 发表时间:
    2022-09-06
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Foreman, Madison M.;Weber, J. Mathias
  • 通讯作者:
    Weber, J. Mathias
Probing the Microsolvation Environment of the Green Fluorescent Protein Chromophore In Vacuo
绿色荧光蛋白发色团真空微溶剂化环境的探讨
  • DOI:
    10.1021/acs.jpclett.0c00105
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zagorec-Marks, Wyatt;Foreman, Madison M.;Verlet, Jan R.;Weber, J. Mathias
  • 通讯作者:
    Weber, J. Mathias
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J Mathias Weber其他文献

J Mathias Weber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J Mathias Weber', 18)}}的其他基金

Cryogenic Ion Spectroscopy Studies of Ion-Receptor Interactions in Water Soluble Molecular Recognition Complexes and Their Hydrated Clusters
水溶性分子识别配合物及其水合簇中离子-受体相互作用的低温离子光谱研究
  • 批准号:
    2154271
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
SusChEM: Studying Catalysts and Reaction Intermediates for Water Oxidation by Spectroscopy of Cryogenic Mass-Selected Ions
SusChEM:通过低温质量选择离子光谱研究水氧化的催化剂和反应中间体
  • 批准号:
    1361814
  • 财政年份:
    2014
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
CAREER: Spectroscopic Studies of Ionic Transition Metal Complexes
职业:离子过渡金属配合物的光谱研究
  • 批准号:
    0845618
  • 财政年份:
    2009
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

从全息对偶研究黑洞内部结构
  • 批准号:
    12365011
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目
类地行星内部超高压下O-Fe-Mg-Si晶体结构与相图研究
  • 批准号:
    12374015
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
掺硼金刚石半导体内部多元复合杂质缺陷的形成机制与结构调控研究
  • 批准号:
    12374012
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
开采扰动下岩体非连续结构内部应力场演化的透明解析
  • 批准号:
    52304076
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
碳酸盐岩区走滑断裂带内部结构及启闭差异性研究---以塔里木盆地为例
  • 批准号:
    42272155
  • 批准年份:
    2022
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目

相似海外基金

Impact of intra-host population structure on influenza virus antigenic evolution
宿主内群体结构对流感病毒抗原进化的影响
  • 批准号:
    10538597
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
Impact of intra-host population structure on influenza virus antigenic evolution
宿主内群体结构对流感病毒抗原进化的影响
  • 批准号:
    10349407
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
Elucidation of morphological evolutionary history of beetle fossils using internal structures and its application to phylogenetics
利用内部结构阐明甲虫化石的形态进化史及其在系统发育学中的应用
  • 批准号:
    20J00159
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study on structures and orientations of proteins in lipid bilayers by heterodyne-detected vibrational SFG spectroscopy
外差检测振动 SFG 光谱研究脂质双层中蛋白质的结构和方向
  • 批准号:
    19K05362
  • 财政年份:
    2019
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the origin and function of high-energy emission around dislocations in III-nitride quantum well structures by nanoscopic spectroscopy
纳米光谱研究III族氮化物量子阱结构位错周围高能发射的起源和作用
  • 批准号:
    19K04490
  • 财政年份:
    2019
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了