EAGER: Transparent electrode device architecture for high efficiency tandem colloidal quantum dot photovoltaics
EAGER:用于高效串联胶体量子点光伏的透明电极器件架构
基本信息
- 批准号:1744671
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractNontechnical The emergence of lightweight, flexible, efficient, and affordable solar cell modules could revolutionize energy generation from the sun. Among the contending technologies, photovoltaics employing lead sulfide nanocrystalline films have been increasing in efficiency at one of the most rapid paces ever seen. However, two aspects limit the efficiency of these cells: how far electrons can move through the lead sulfide film and how many material defects exist in the nanocrystals. Tandem solar cells (multiple solar cells grown on top of one another) can circumvent these limitations because multiple thin cells can be stacked to achieve strong absorption across the whole cell. Surprisingly, previous attempts at fabricating two-layer tandem photovoltaics using lead sulfide nanocrystals have not achieved the dramatic gains in efficiency that would be expected. This project presents modeling data showing that at least five layers of cells must be stacked before significant enhancements in efficiency will be observed. A proof-of-principal device will be fabricated consisting of two solar cells connected with a transparent conducting metal oxide layer. The research will take place at Mount Holyoke College, a women's undergraduate college with a remarkable history of educating women in the sciences.TechnicalThe PI will fabricate a lead sulfide colloidal quantum dot photovoltaic in a tandem structure in order to enhance absorption in the critical long-wavelength region of the solar spectrum. Dramatic gains in the power conversion efficiency of colloidal quantum dot photovoltaics have been achieved over the past decade, but many of the best devices still suffer from low absorption in the infrared, a consequence of weak oscillator strength at the first excitonic transition peak, often resulting in more than a 50% reduction in absorption alone. The mismatch between the carrier diffusion length (ranging around 100 nm) and the thickness needed to absorb an appreciable amount of the solar spectrum (ranging around 500 nm) accounts for the shortfall in absorption. Preliminary modeling demonstrates that a five-junction tandem structure can achieve full absorption while allowing the maximum thickness of the lead sulfide layer in each sub cell to stay within 100 nm, achieving a straightforward, attainable pathway to realistic efficiencies approaching 19% and theoretical efficiencies approaching 28%. Tandem structures are an effective method of increasing absorption already employed in small molecule organic PV and elsewhere, but never before have had researchers assembled the tools needed to effectively construct five or more tandem junctions. The PI will fabricate a proof-of-principle tandem structure by employing a custom low-damage sputtering technique for the deposition of metal oxide transport layers and transparent conductors at the recombination zone, an integrated fiber-optic spectrophotometer for accurate absorption measurements coupled with careful optical modeling, an interconnected glovebox system for seamless device fabrication, and a revolutionary Thermo-reflectance imaging technique to map current flow and electric field non-uniformities.
摘要非技术性轻质、灵活、高效且价格实惠的太阳能电池模块的出现可能会彻底改变太阳能发电。在相互竞争的技术中,采用硫化铅纳米晶薄膜的光伏发电的效率一直在以有史以来最快的速度之一提高。然而,有两个方面限制了这些电池的效率:电子可以穿过硫化铅薄膜多远以及纳米晶体中存在多少材料缺陷。串联太阳能电池(多个太阳能电池彼此堆叠)可以规避这些限制,因为可以堆叠多个薄电池以实现整个电池的强吸收。令人惊讶的是,之前使用硫化铅纳米晶体制造两层串联光伏电池的尝试并未实现预期的效率显着提高。该项目提供的建模数据表明,在观察到效率显着提高之前,必须堆叠至少五层电池。将制造一个原理验证装置,由两个与透明导电金属氧化物层连接的太阳能电池组成。这项研究将在曼荷莲学院 (Mount Holyoke College) 进行,这是一所女子本科学院,在教育女性科学方面有着悠久的历史。太阳光谱的波长区域。在过去的十年中,胶体量子点光伏发电的功率转换效率取得了巨大的进步,但许多最好的器件仍然存在红外吸收率低的问题,这是由于第一个激子跃迁峰处的振荡器强度较弱,通常会导致这种情况。仅吸收量就减少了 50% 以上。 载流子扩散长度(范围在 100 nm 左右)和吸收大量太阳光谱(范围在 500 nm 左右)所需的厚度之间的不匹配是吸收不足的原因。 初步建模表明,五结串联结构可以实现完全吸收,同时允许每个子电池中硫化铅层的最大厚度保持在 100 nm 以内,从而实现了接近 19% 的实际效率和接近 19% 的理论效率的直接、可实现的途径28%。 串联结构是一种增加吸收的有效方法,已在小分子有机光伏和其他领域使用,但研究人员以前从未组装过有效构建五个或更多串联结所需的工具。 PI 将通过采用定制的低损伤溅射技术在复合区沉积金属氧化物传输层和透明导体来制造原理验证串联结构,并使用集成光纤分光光度计进行精确的吸收测量,并结合仔细的光学建模、用于无缝器件制造的互连手套箱系统,以及用于绘制电流和电场不均匀性的革命性热反射成像技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexi Arango其他文献
Alexi Arango的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexi Arango', 18)}}的其他基金
MRI: Acquisition of a multi chamber hybrid organic/inorganic thin film deposition system
MRI:购买多室混合有机/无机薄膜沉积系统
- 批准号:
1229028 - 财政年份:2012
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
EAGER: Feasibility of Increasing Organic LED Lifetime via Improved Thermal Management
EAGER:通过改进热管理提高有机 LED 寿命的可行性
- 批准号:
1064129 - 财政年份:2010
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
相似国自然基金
基于光系统I单层膜的柔性透明生物光电极的构筑及其光转化效率研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
忆阻器中透明ITO电极铟离子输运调控机制的原位研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
智能型木材基柔性透明电极的构筑及其储能与电致变色双重响应机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低表面粗糙度及高粘附力Ag-NW透明电极的制备及应用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
聚合物电解质掺杂的全石墨烯电极透明OLED的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Novel Transparent, Ultra-soft Neuroelectrode Arrays Based on Nanomeshing Conventional Electrode Materials SUPPLEMENT
基于纳米网格的新型透明、超软神经电极阵列传统电极材料补充
- 批准号:
10579663 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Development of a high performance laminated transparent top-electrode for emerging thin-film photovoltaics
开发用于新兴薄膜光伏的高性能层压透明顶部电极
- 批准号:
EP/V002023/1 - 财政年份:2021
- 资助金额:
$ 8万 - 项目类别:
Research Grant
Novel Transparent, Ultra-soft Neuroelectrode Arrays Based on Nanomeshing Conventional Electrode Materials
基于纳米网格传统电极材料的新型透明、超软神经电极阵列
- 批准号:
10541287 - 财政年份:2020
- 资助金额:
$ 8万 - 项目类别:
Development of platform for electrochemiluminescence immunoassay using graphene transparent electrode
石墨烯透明电极电化学发光免疫分析平台的开发
- 批准号:
19K05218 - 财政年份:2019
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transparent graphene electrode arrays for simultaneous electrical and optical investigation of computations in the olfactory bulb
透明石墨烯电极阵列用于同时进行嗅球计算的电学和光学研究
- 批准号:
10415793 - 财政年份:2019
- 资助金额:
$ 8万 - 项目类别: