RAPID: Fast Reconstruction of Flood Hydrographs in the Houston Metropolitan Area during Hurricane Harvey Based on Image Processing and In-situ Measurements
RAPID:基于图像处理和现场测量快速重建飓风“哈维”期间休斯顿都会区洪水过程线
基本信息
- 批准号:1760582
- 负责人:
- 金额:$ 6.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to construct flood hydrographs in urban areas in real-time during flash floods, hurricanes, and other extreme weather events is difficult because of the low spatial density of water level measurements and the complex interactions of built infrastructure, ground topography, and natural landscape with flowing water. The goal of this RAPID project is to leverage perishable images and video footage from traffic intersection and interstate highway cameras, major news media outlets, and social media along with reference objects/points. Subsequent photo image processing, scaled to the reference objects, will enable development of a more continuous, accurate hydrograph in the Houston metropolitan area. By reconstructing the flood hydrographs at a large number of locations in flooded highways, streets and residential subdivisions, high-resolution, process-based urban inundation modeling from hurricane-generated surge and rainfall will become significantly more accurate. For example, it will facilitate a better understanding of transport of sediments and pollutants in and out of Houston during Hurricane Harvey. Such a model validated by the reconstructed hydrographs will also aid state and local governments in making timely evacuation decisions for low-lying areas to mitigate the impact of similar hurricane-induced hazards.This RAPID project based on reconstruction of flood hydrographs in Houston using image processing and in-situ measurements has significant intellectual merit: (1) The proposed methodology is innovative and creative because it does not employ any traditional stream gages. Instead, it relies on a unique form of existing data employed for a new application. (2) The reconstructed flood hydrographs will significantly improve the understanding of the hydrological processes of this unprecedented flood event caused by the extreme rainfall of Hurricane Harvey. (3) The data will benefit the development of a new flood model for Houston. (4) The developed algorithms and software for processing the traffic image data, which will be available on the NHERI DesignSafe-CI platform, can be readily applied to many other flood-prone urban centers, such as New York City, New Orleans, and Miami.
由于水位测量的空间密度低以及建筑基础设施,地面地形和自然景观与流动水的复杂相互作用,因此很难实时在城市地区实时建造洪水水文图,这是困难的。这个快速项目的目的是利用交通交叉路口和州际公路摄像机,主要新闻媒体媒体以及社交媒体以及参考对象/点的可腐烂的图像和录像带。随后的照片图像处理(缩放到参考对象)将能够在休斯顿都会区开发更连续,准确的水文图。通过在洪水泛滥的高速公路,街道和住宅区的大量位置重建洪水水文图,高分辨率,基于过程的城市淹没模型从飓风生成的激增和降雨量将变得更加准确。例如,这将有助于更好地了解哈维飓风期间在休斯敦进出污染物的运输。通过重建的水文验证验证的这种模型还将帮助州和地方政府对低洼地区及时撤离决策,以减轻类似飓风引起的危害的影响。基于休斯顿洪水水文的快速项目使用图像处理和使用图像处理和静脉内测量值进行了智力优点,因此具有重要的方法:(1)具有创造性的方法,因为它具有启发性的方法:(1)具有创造性的作用。相反,它依赖于用于新应用程序的现有数据的独特形式。 (2)重建的洪水水文图将显着提高人们对这一前所未有的洪水事件的水文过程的理解,这是由于哈维飓风的极端降雨而引起的。 (3)数据将使休斯顿新的洪水模型的开发受益。 (4)可以在Nheri DesignSafe-CI平台上获得的开发算法和软件,可在Neri DesignSafe-CI平台上找到,可以轻松地应用于许多其他容易发生洪水的城市中心,例如纽约市,新奥尔良和迈阿密。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Navid Jafari其他文献
Sedimentary Processes and Instability on the Mississippi River Delta Front near the Shipwreck of the SS Virginia
弗吉尼亚号沉船附近密西西比河三角洲前缘的沉积过程和不稳定性
- DOI:
- 发表时间:20242024
- 期刊:
- 影响因子:3.4
- 作者:Nathan Figueredo;S. Bentley;J. Chaytor;Kehui Xu;Navid Jafari;I. Georgiou;M. Damour;Jeffrey Duxbury;J. Obelcz;Jillian MaloneyNathan Figueredo;S. Bentley;J. Chaytor;Kehui Xu;Navid Jafari;I. Georgiou;M. Damour;Jeffrey Duxbury;J. Obelcz;Jillian Maloney
- 通讯作者:Jillian MaloneyJillian Maloney
Spatial and temporal variations of seabed sediment characteristics in the inner Louisiana shelf
- DOI:10.1016/j.margeo.2023.10711510.1016/j.margeo.2023.107115
- 发表时间:2023-09-012023-09-01
- 期刊:
- 影响因子:
- 作者:Wenqiang Zhang;Kehui Xu;Colin Herke;Omar Alawneh;Navid Jafari;Kanchan Maiti;Patrick O. Clower;Cassandra N. Glaspie;Jillian C. Tupitza;Z. George XueWenqiang Zhang;Kehui Xu;Colin Herke;Omar Alawneh;Navid Jafari;Kanchan Maiti;Patrick O. Clower;Cassandra N. Glaspie;Jillian C. Tupitza;Z. George Xue
- 通讯作者:Z. George XueZ. George Xue
共 2 条
- 1
Navid Jafari的其他基金
I-Corps: X-Roots X-ray Computed Tomography Scans of Belowground Root Systems
I-Corps:X-Roots 地下根系的 X 射线计算机断层扫描
- 批准号:23448522344852
- 财政年份:2024
- 资助金额:$ 6.12万$ 6.12万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Integrated Numerical Modeling and Field Observations of Hurricane Impacts to Natural and Hybrid Infrastructure
合作研究:飓风对自然和混合基础设施影响的综合数值模拟和现场观测
- 批准号:21398832139883
- 财政年份:2022
- 资助金额:$ 6.12万$ 6.12万
- 项目类别:Standard GrantStandard Grant
RAPID: Quantifying Wetland Root Structure, Strength, and Uprooting due to Hurricane Ida
RAPID:量化飓风艾达造成的湿地根系结构、强度和连根拔起
- 批准号:22023132202313
- 财政年份:2021
- 资助金额:$ 6.12万$ 6.12万
- 项目类别:Standard GrantStandard Grant
IUCRC Planning Grant Louisiana State University: Center for Coastal Deltaic Innovation, Research, & Technology (CDIRT)
IUCRC 规划拨款 路易斯安那州立大学:沿海三角洲创新、研究中心
- 批准号:21138432113843
- 财政年份:2021
- 资助金额:$ 6.12万$ 6.12万
- 项目类别:Standard GrantStandard Grant
RAPID: Collaborative Research: Data Mining and Fusion Between Unmanned Aerial Systems and Social Media Technologies to Improve Emergency Operations
RAPID:协作研究:无人机系统和社交媒体技术之间的数据挖掘和融合,以改善紧急行动
- 批准号:19457871945787
- 财政年份:2019
- 资助金额:$ 6.12万$ 6.12万
- 项目类别:Standard GrantStandard Grant
RAPID: Collaborative: Data Driven Post-Disaster Waste and Debris Volume Predictions using Smartphone Photogrammetry App and Unmanned Aerial Vehicles
RAPID:协作:使用智能手机摄影测量应用程序和无人机进行数据驱动的灾后废物和碎片体积预测
- 批准号:17607181760718
- 财政年份:2017
- 资助金额:$ 6.12万$ 6.12万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
基于神经网络的FAST馈源融合测量算法研究
- 批准号:12363010
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
使用FAST开展河外中性氢吸收线普查
- 批准号:12373011
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
钢渣粉地聚物超高性能混凝土密实强化与快速胶凝机理
- 批准号:52378230
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
- 批准号:12373107
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
- 批准号:12303042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Rapid Automated High-Throughput Radiation Biodosimetry
快速自动化高通量辐射生物剂量测定
- 批准号:80121878012187
- 财政年份:2010
- 资助金额:$ 6.12万$ 6.12万
- 项目类别:
Hardware for Ultra-Fast CT Reconstruction
用于超快速 CT 重建的硬件
- 批准号:69362446936244
- 财政年份:2005
- 资助金额:$ 6.12万$ 6.12万
- 项目类别:
Rapid Automated High-Throughput Radiation Biodosimetry
快速自动化高通量辐射生物剂量测定
- 批准号:87053508705350
- 财政年份:
- 资助金额:$ 6.12万$ 6.12万
- 项目类别:
Rapid Automated High-Throughput Radiation Biodosimetry
快速自动化高通量辐射生物剂量测定
- 批准号:83086098308609
- 财政年份:
- 资助金额:$ 6.12万$ 6.12万
- 项目类别:
Rapid Non-invasive Radiation Biodosimetry through Metabolomics
通过代谢组学进行快速无创辐射生物剂量测定
- 批准号:97538739753873
- 财政年份:
- 资助金额:$ 6.12万$ 6.12万
- 项目类别: