CRII: RI: Learning Structured Prediction Models with Auxiliary Supervision
CRII:RI:学习具有辅助监督的结构化预测模型
基本信息
- 批准号:1760523
- 负责人:
- 金额:$ 17.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many machine learning problems involve making joint predictions over a set or a sequence of mutually dependent outputs. As an example, consider recognizing a handwritten word, where each character must be recognized in order for the word to be understood. It is important to consider the correlations between the predictions of adjacent characters to aid the individual predictions of characters. Structured prediction models are proposed to solve problems of this type. They have been shown to be successful in many real-world applications, including speech recognition, natural language understanding, and object detection in images. Despite its success, training a structured prediction model requires an extensive collection of training data. However, obtaining human annotations with complex structures is costly. For example, it takes a professionally trained linguist several minutes to label a syntactic parse tree for a single sentence, making it expensive to obtain high-quality annotations. The objective of this research is to develop methods that utilize learning signals that do not directly aim to achieve the target tasks. The outcome of this project will create a fundamental shift in the applicability of structured prediction models, enabling applications in which complex decisions are required and annotated data are expensive to acquire. This will bring new collaboration opportunities with other areas, including education, healthcare, and social and behavioral sciences.The goals of this project are to study algorithms for training structured prediction models from heterogeneous learning signals, design automatic algorithms for mining useful information from massive columns of structured and unstructured data, and apply the proposed techniques in real-world applications. The proposed algorithms will be evaluated on a broad range of natural language processing applications, including the algebra word problem, co-reference resolution, and grammatical error correction. The results of the project will be disseminated by publishing papers, releasing open-source software and data sets, organizing workshops and tutorials, and creating new courses on natural language processing and machine learning.
许多机器学习问题涉及对集合或一系列相互依赖的输出进行联合预测。作为一个例子,请考虑识别一个手写的单词,必须识别每个字符才能理解单词。重要的是要考虑相邻字符的预测之间的相关性,以帮助字符的个体预测。提出了结构化预测模型来解决此类问题。它们已被证明在许多现实世界中都成功,包括语音识别,自然语言理解和图像中的对象检测。尽管取得了成功,但培训结构化的预测模型仍需要大量的培训数据收集。但是,获得具有复杂结构的人类注释是昂贵的。例如,它需要一个经过专业训练的语言学家几分钟才能用一句话标记一句话的句法解析树,从而获得高质量的注释变得昂贵。这项研究的目的是开发利用不直接旨在实现目标任务的学习信号的方法。该项目的结果将在结构化预测模型的适用性上产生根本的转变,从而使需要进行复杂决策的应用程序,并获得带注释的数据昂贵。这将为其他领域带来新的合作机会,包括教育,医疗保健以及社会和行为科学。该项目的目标是研究算法,用于培训从异构学习信号,设计自动算法的结构化预测模型,以挖掘有用的有用信息,从结构化和非结构数据的大量列中,并应用了建议的技术,并应用了现实的技术应用程序。提出的算法将在广泛的自然语言处理应用中进行评估,包括代数单词问题,共同参考分辨率和语法误差校正。该项目的结果将通过发布论文,释放开源软件和数据集,组织研讨会和教程以及创建有关自然语言处理和机器学习的新课程来传播。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gender Bias in Contextualized Word Embeddings
- DOI:10.18653/v1/n19-1064
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:Jieyu Zhao;Tianlu Wang;Mark Yatskar;Ryan Cotterell;Vicente Ordonez;Kai-Wei Chang
- 通讯作者:Jieyu Zhao;Tianlu Wang;Mark Yatskar;Ryan Cotterell;Vicente Ordonez;Kai-Wei Chang
Robust Text Classifier on Test-Time Budgets
- DOI:10.18653/v1/d19-1108
- 发表时间:2018-08
- 期刊:
- 影响因子:9.5
- 作者:Rizwan Parvez;Tolga Bolukbasi;Kai-Wei Chang;Venkatesh Saligrama
- 通讯作者:Rizwan Parvez;Tolga Bolukbasi;Kai-Wei Chang;Venkatesh Saligrama
Learning Word Embeddings for Low-Resource Languages by PU Learning
- DOI:10.18653/v1/n18-1093
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Chao Jiang;Hsiang-Fu Yu;Cho-Jui Hsieh;Kai-Wei Chang
- 通讯作者:Chao Jiang;Hsiang-Fu Yu;Cho-Jui Hsieh;Kai-Wei Chang
Intent-aware Query Obfuscation for Privacy Protection in Personalized Web Search
- DOI:10.1145/3209978.3209983
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:Wasi Uddin Ahmad;Kai-Wei Chang;Hongning Wang
- 通讯作者:Wasi Uddin Ahmad;Kai-Wei Chang;Hongning Wang
Multi-Task Learning for Document Ranking and Query Suggestion
- DOI:
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Wasi Uddin Ahmad;Kai-Wei Chang;Hongning Wang
- 通讯作者:Wasi Uddin Ahmad;Kai-Wei Chang;Hongning Wang
共 21 条
- 1
- 2
- 3
- 4
- 5
Kai-Wei Chang其他文献
Cath Lab Emergency: Management of Procedure-Induced Acute Aortocoronary Dissection
- DOI:10.1016/j.chest.2016.02.06310.1016/j.chest.2016.02.063
- 发表时间:2016-04-012016-04-01
- 期刊:
- 影响因子:
- 作者:Tsung-Po Tsai;Jung-Ming Yu;Mao-Jen Lin;Kai-Wei Chang;An-Hua Sun;Kuei-Chuan Chan;Heng Su;Shih-Chen Tsai;Su-Chin TsaoTsung-Po Tsai;Jung-Ming Yu;Mao-Jen Lin;Kai-Wei Chang;An-Hua Sun;Kuei-Chuan Chan;Heng Su;Shih-Chen Tsai;Su-Chin Tsao
- 通讯作者:Su-Chin TsaoSu-Chin Tsao
Multi-core Structural SVM Training
- DOI:10.1007/978-3-642-40991-2_2610.1007/978-3-642-40991-2_26
- 发表时间:2013-01-012013-01-01
- 期刊:
- 影响因子:0
- 作者:Kai-Wei Chang;Srikumar, Vivek;Roth, DanKai-Wei Chang;Srikumar, Vivek;Roth, Dan
- 通讯作者:Roth, DanRoth, Dan
Two-Dimensional Magnetic Semiconductors Based on Transition-Metal Dichalcogenides VX2(X = S, Se, Te) and Similar Layered Compounds VI2and Co(OH)2
- DOI:10.1109/lmag.2016.262172010.1109/lmag.2016.2621720
- 发表时间:2017-01-012017-01-01
- 期刊:
- 影响因子:1.2
- 作者:Huei-Ru Fuh;Kai-Wei Chang;Horng-Tay JengHuei-Ru Fuh;Kai-Wei Chang;Horng-Tay Jeng
- 通讯作者:Horng-Tay JengHorng-Tay Jeng
Identification of a rod domain-truncated isoform of nestin, Nes-SΔ<sub>107–254</sub>, in rat dorsal root ganglia
- DOI:10.1016/j.neulet.2013.08.03510.1016/j.neulet.2013.08.035
- 发表时间:2013-10-112013-10-11
- 期刊:
- 影响因子:
- 作者:Zong-Ruei Wong;Peng-Han Su;Kai-Wei Chang;Bu-Miin Huang;Hsinyu Lee;Hsi-Yuan YangZong-Ruei Wong;Peng-Han Su;Kai-Wei Chang;Bu-Miin Huang;Hsinyu Lee;Hsi-Yuan Yang
- 通讯作者:Hsi-Yuan YangHsi-Yuan Yang
共 4 条
- 1
Kai-Wei Chang的其他基金
AI-DCL: Governing bias in AI system with humans in the decision loop
AI-DCL:在人类参与决策循环的情况下控制人工智能系统中的偏见
- 批准号:19275541927554
- 财政年份:2019
- 资助金额:$ 17.09万$ 17.09万
- 项目类别:Standard GrantStandard Grant
CRII: RI: Learning Structured Prediction Models with Auxiliary Supervision
CRII:RI:学习具有辅助监督的结构化预测模型
- 批准号:16571931657193
- 财政年份:2017
- 资助金额:$ 17.09万$ 17.09万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
- 批准号:82301120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
- 批准号:82374375
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
- 批准号:82300022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
- 批准号:32200568
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: RI: Building A Self-Learning Robot System with Neuromorphic Computing
CRII:RI:构建具有神经形态计算的自学习机器人系统
- 批准号:22457122245712
- 财政年份:2023
- 资助金额:$ 17.09万$ 17.09万
- 项目类别:Standard GrantStandard Grant
CRII: RI: Immune-Inspired Learning Foundations of Neural Network General Robustness
CRII:RI:神经网络一般鲁棒性的免疫启发学习基础
- 批准号:22461572246157
- 财政年份:2023
- 资助金额:$ 17.09万$ 17.09万
- 项目类别:Standard GrantStandard Grant
CRII: RI: Secure Multi-Agent Reinforcement Learning Algorithms
CRII:RI:安全多代理强化学习算法
- 批准号:21050072105007
- 财政年份:2021
- 资助金额:$ 17.09万$ 17.09万
- 项目类别:Standard GrantStandard Grant
CRII: RI: Learning novel multi-resolution representations of graphs: Applications to Brain Connectivity analysis for Alzheimer's Disease
CRII:RI:学习图形的新颖多分辨率表示:在阿尔茨海默氏病大脑连接分析中的应用
- 批准号:19485101948510
- 财政年份:2020
- 资助金额:$ 17.09万$ 17.09万
- 项目类别:Standard GrantStandard Grant
CRII: RI: Learning a Timely Semantic Resource from Social Media Data
CRII:RI:从社交媒体数据中学习及时的语义资源
- 批准号:20384572038457
- 财政年份:2020
- 资助金额:$ 17.09万$ 17.09万
- 项目类别:Standard GrantStandard Grant