PIRE: Hybrid Materials for Quantum Science and Engineering (HYBRID)

PIRE:量子科学与工程混合材料(HYBRID)

基本信息

  • 批准号:
    1743717
  • 负责人:
  • 金额:
    $ 479.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

PI: Sergey Frolov (University of Pittsburgh)co-PIs: Michael Hatridge (University of Pittsburgh)David Pekker (University of Pittsburgh)Hrvoje Petek (University of Pittsburgh)Non-technical abstractA future quantum computer will unlock revolutionary computing powers based on the principles of quantum superposition and entanglement. However, any computer is only as good as the materials it is built from: for instance, the success of our present day computers is due to the remarkable properties of silicon which can be crafted into processors. This PIRE will establish a multidisciplinary partnership between universities, research centers and corporations in the U.S. and France, led by the University of Pittsburgh. The aim of the partnership is the discovery and investigation of materials that hold exceptional promise for fundamental quantum physics and quantum device engineering. In particular, the focus will be on hybrid materials which combine disparate materials kinds, such as semiconductors and superconductors, in a single structure. Hybrid materials are as diverse as nanowires and atom-thick sheets, with atomically sharp interfaces between one material and the other. This PIRE program will bring together materials engineers, surface scientists, computational chemists, and experimental and theoretical physicists. The approach will extend from crystal growth to fabrication and testing of quantum devices based on newly synthesized materials, guided and aided by theoretical and computational studies. U.S. and French students will receive quantum technology training in the multicultural and multidisciplinary environment of the project.Technical abstractDue to the inherent fragility of quantum information, the materials requirements for quantum computers are more stringent than for classical computers. Furthermore, new physical phenomena may need to be discovered and mastered before a practical quantum computer can be built. The primary research goal of this PIRE is the discovery of new hybrid materials and the search for emergent phenomena that can only be realized at hybrid interfaces. Hybrid materials are those which combine layers of dissimilar material classes, such as superconductors and semiconductors. This partnership will focus on a diverse universe of hybrid materials including nanowires, van der Waals heterostructures and two-dimensional epitaxial interfaces. The approach will extend from in-situ observation of crystal growth to low temperature measurements of quantum devices based on these materials, guided by first-principles and mesoscopic theory studies. Two-dimensional materials will be primarily pursued in the U.S., while one-dimensional materials will be the focus in France. Scalability of quantum architectures comprising thousands of quantum bits demands a precise understanding of and control over the materials that will comprise quantum circuits. Interfacing superconductors with semiconductors may pave the way to realizing such large-scale quantum circuits by combining the virtues of both, namely the electrical tunability of semiconductors with the long coherence times observed in superconductors. Superconductor/semiconductor interfaces are also the basis for proposed fault tolerant qubits encoded in topologically protected quantum states immune to local noise. Undergraduate, graduate students and postdocs from U.S. will perform research visits to France and participate in international research projects that will take advantage of unique research infrastructure and a well-established International Internship Program in Grenoble. Laboratories in the US will welcome French students for reciprocal visits. Summer schools and online courses on the frontier subjects in materials science and quantum computing will be organized for the junior researchers in the program.
PI:Sergey Frolov(匹兹堡大学)co-PI:Michael Hatridge(匹兹堡大学)David Pekker(匹兹堡大学)Hrvoje Petek(匹兹堡大学)非技术摘要未来的量子计算机将基于以下原理解锁革命性的计算能力量子叠加和纠缠。然而,任何计算机的好坏取决于其制造材料:例如,我们当今计算机的成功归功于硅的卓越性能,可以将其制作成处理器。该 PIRE 将在匹兹堡大学的领导下,在美国和法国的大学、研究中心和企业之间建立多学科合作伙伴关系。此次合作的目标是发现和研究对基础量子物理和量子器件工程具有特殊前景的材料。特别是,重点将放在将不同材料种类(例如半导体和超导体)结合在单一结构中的混合材料。混合材料与纳米线和原子厚片一样多种多样,一种材料与另一种材料之间具有原子级清晰的界面。该 PIRE 项目将汇集材料工程师、表面科学家、计算化学家以及实验和理论物理学家。该方法将从晶体生长扩展到基于新合成材料的量子器件的制造和测试,并在理论和计算研究的指导和帮助下。美国和法国学生将在该项目的多元文化和多学科环境中接受量子技术培训。 技术摘要由于量子信息固有的脆弱性,量子计算机的材料要求比经典计算机更加严格。此外,在建造实用的量子计算机之前,可能需要发现和掌握新的物理现象。该 PIRE 的主要研究目标是发现新的混合材料并寻找只能在混合界面上实现的新兴现象。混合材料是指将不同材料类别的层组合在一起的材料,例如超导体和半导体。此次合作将重点关注各种混合材料,包括纳米线、范德华异质结构和二维外延界面。该方法将以第一原理和介观理论研究为指导,从晶体生长的原位观察扩展到基于这些材料的量子器件的低温测量。二维材料将主要在美国发展,而一维材料将是法国的重点。包含数千个量子比特的量子架构的可扩展性需要对构成量子电路的材料进行精确的理解和控制。将超导体与半导体连接起来,可以通过结合两者的优点,即半导体的电可调谐性与超导体中观察到的长相干时间,为实现如此大规模的量子电路铺平道路。超导/半导体接口也是提出的容错量子位的基础,该量子位编码在拓扑保护的量子态中,不受局部噪声的影响。来自美国的本科生、研究生和博士后将前往法国进行研究访问并参与国际研究项目,这些项目将利用格勒诺布尔独特的研究基础设施和完善的国际实习计划。美国实验室将欢迎法国学生互访。将为该项目的初级研究人员举办材料科学和量子计算前沿学科的暑期学校和在线课程。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Germanium Quantum-Well Josephson Field-Effect Transistors and Interferometers
锗量子阱约瑟夫森场效应晶体管和干涉仪
  • DOI:
    10.1021/acs.nanolett.8b04275
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Vigneau, Florian;Mizokuchi, Raisei;Zanuz, Dante Colao;Huang, Xuhai;Tan, Susheng;Maurand, Romain;Frolov, Sergey;Sammak, Amir;Scappucci, Giordano;Lefloch, Francois;et al
  • 通讯作者:
    et al
Control and detection of Majorana bound states in quantum dot arrays
量子点阵列中马约拉纳束缚态的控制和检测
  • DOI:
    10.1103/physrevb.98.085407
  • 发表时间:
    2018-05-21
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    John P. T. Stenger;B. Woods;S. Frolov;T. Stanescu
  • 通讯作者:
    T. Stanescu
Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides
通过二维过渡金属二硫属化物中的层和自旋轨道耦合调节伊辛超导性
  • DOI:
    10.1038/s41467-018-03888-4
  • 发表时间:
    2018-04-12
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    de la Barrera SC;Sinko MR;Gopalan DP;Sivadas N;Seyler KL;Watanabe K;Taniguchi T;Tsen AW;Xu X;Xiao D;Hunt BM
  • 通讯作者:
    Hunt BM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergey Frolov其他文献

Tachyon condensation and universality of DBI action
快子凝聚和 DBI 作用的普遍性
  • DOI:
    10.1088/1126-6708/2001/02/002
  • 发表时间:
    2000-12-08
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    G. Arutyunov;S. Theisen;Sergey Frolov;A. Tseytlin
  • 通讯作者:
    A. Tseytlin
Optimal surgical timing for ear reconstruction with autologous cartilage: Analysis of the computed tomography scan characteristics of the ribs.
自体软骨耳重建的最佳手术时机:肋骨计算机断层扫描特征分析。
Second-Harmonic Current-Phase Relation in Josephson Junctions with Ferromagnetic Barriers.
具有铁磁势垒的约瑟夫森结中的二次谐波电流相位关系。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    M. Stoutimore;A. N. Rossolenko;V. V. Bolginov;V. V. Bolginov;V. V. Bolginov;V. Oboznov;A. Rusanov;D. S. Baranov;D. S. Baranov;N. Pugach;N. Pugach;Sergey Frolov;V. Ryazanov;V. Ryazanov;V. Ryazanov;D. Harlingen
  • 通讯作者:
    D. Harlingen
Ballistic spin resonance
弹道自旋共振
  • DOI:
    10.1038/nature07873
  • 发表时间:
    2008-11-08
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Sergey Frolov;S. Lüscher;W. Yu;Yuan Ren;Joshua Folk;Werner Wegscheider
  • 通讯作者:
    Werner Wegscheider
Comments on Integrability in the Symmetric Orbifold
对对称 Orbifold 中可积性的评论
  • DOI:
    10.1007/jhep02(2019)135
  • 发表时间:
    2023-12-21
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Sergey Frolov;Alessandro Sfondrini
  • 通讯作者:
    Alessandro Sfondrini

Sergey Frolov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergey Frolov', 18)}}的其他基金

Conference: Reproducibility in Experimental Condensed Matter Physics
会议:实验凝聚态物理的再现性
  • 批准号:
    2326983
  • 财政年份:
    2023
  • 资助金额:
    $ 479.98万
  • 项目类别:
    Standard Grant
Conference: Reproducibility in Experimental Condensed Matter Physics
会议:实验凝聚态物理的再现性
  • 批准号:
    2326983
  • 财政年份:
    2023
  • 资助金额:
    $ 479.98万
  • 项目类别:
    Standard Grant
EAGER: BRAIDING: Majorana Bound States in Semiconductor Nanowire Networks
渴望:编织:半导体纳米线网络中的马约拉纳束缚态
  • 批准号:
    1743972
  • 财政年份:
    2017
  • 资助金额:
    $ 479.98万
  • 项目类别:
    Standard Grant
EAGER: BRAIDING: Majorana Bound States in Semiconductor Nanowire Networks
渴望:编织:半导体纳米线网络中的马约拉纳束缚态
  • 批准号:
    1743972
  • 财政年份:
    2017
  • 资助金额:
    $ 479.98万
  • 项目类别:
    Standard Grant
CAREER: Are Majorana Bound States Non-Abelian Particles?
职业生涯:马约拉纳束缚态是非阿贝尔粒子吗?
  • 批准号:
    1252962
  • 财政年份:
    2013
  • 资助金额:
    $ 479.98万
  • 项目类别:
    Continuing Grant
RUI: String Theory and its Applications
RUI:弦理论及其应用
  • 批准号:
    0504113
  • 财政年份:
    2005
  • 资助金额:
    $ 479.98万
  • 项目类别:
    Continuing grant

相似国自然基金

亲本自交系对玉米杂交种抗旱能力的影响及机理解析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
在油菜中发展基因组选择技术助力新型种质资源库优良株系的鉴定和杂交种测配
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
基于全长转录组研究“西盘鲍”杂交种阶段性抗病菌杂种优势的机制
  • 批准号:
    31902369
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于深度压缩技术的Hybrid像素探测器读出系统原型机研制
  • 批准号:
    11875146
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
模拟胰岛“hybrid”修饰抗原诱导tolDC免疫保护1型糖尿病β细胞研究
  • 批准号:
    81770777
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
  • 批准号:
    2334040
  • 财政年份:
    2024
  • 资助金额:
    $ 479.98万
  • 项目类别:
    Continuing Grant
CAREER: Liquid Crystal-Templated Sequential Infiltration Synthesis of Hybrid Organic/Inorganic Materials with Multidimensional Chiral Structures
职业:具有多维手性结构的有机/无机杂化材料的液晶模板连续渗透合成
  • 批准号:
    2337740
  • 财政年份:
    2024
  • 资助金额:
    $ 479.98万
  • 项目类别:
    Continuing Grant
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
  • 批准号:
    2349887
  • 财政年份:
    2024
  • 资助金额:
    $ 479.98万
  • 项目类别:
    Standard Grant
Sustainable Responsive Hybrid Ionic Liquid-Polymer Gel Electrolyte Materials
可持续响应杂化离子液体-聚合物凝胶电解质材料
  • 批准号:
    EP/Y005309/1
  • 财政年份:
    2024
  • 资助金额:
    $ 479.98万
  • 项目类别:
    Research Grant
CAREER: Development of Novel High-Performance Carbon Sink Concrete Materials Using Sustainable Multifunctional Hybrid Additives
职业:使用可持续多功能混合添加剂开发新型高性能碳汇混凝土材料
  • 批准号:
    2335878
  • 财政年份:
    2024
  • 资助金额:
    $ 479.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了