RTG: Randomized Numerical Analysis
RTG:随机数值分析
基本信息
- 批准号:1745654
- 负责人:
- 金额:$ 214万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Classical methods from scientific computing were designed with the natural goal of finding exact answers to exact questions. Such methods cannot address most of today's large and complex computational models. This research training group focuses on the development of methods which aim instead at providing approximate answers to approximate questions thereby opening up the door for new generations of numerical tools well adapted to 21st century problems. The program provides training opportunities for undergraduate, graduate, and postdoctoral participants who benefit from their integration in vertically structured working groups. It is important for Science, Technology Engineering and Math (STEM) students to have professional skills extending beyond technical expertise; they must be able to communicate their results to non-technical audiences in clear, compelling and engaging ways. Through its emphasis on multi-layered working groups, the program offers a prime training ground for its participants to gain the communication skills necessary to bridge disciplinary divides, as is required for work addressing most of society's grand challenges. The program also involves the development of new course material, both online and on campus, that reflects and addresses challenges in present-day scientific computing.The paradigm of numerical analysis as the study of algorithms for the problems of continuous mathematics needs to be updated. An increasing number of data intensive applications are better described through discrete mathematics in terms of graphs or networks rather than through the smooth manifolds of continuous mathematics. Additionally, current computational models are often neither well-posed nor well-conditioned; new approaches are needed. The program addresses this pressing need by using randomization as the key scientific tool. The research is organized around three complementary thrusts in numerical linear algebra, nonlinear solvers and global sensitivity analysis. By analyzing the effect on numerical solutions of perturbations caused by randomization, or corrupted data, the first two thrusts fill a critical gap in the theoretical foundation to numerical analysis under large perturbations and low accuracy: even the notion of numerical solution has to be revisited. The third thrust aims at reducing model complexity through novel sensitivity analysis methods and the use of surrogate models; this thrust both capitalizes on and contributes to the previous two.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学计算的经典方法的设计自然目标是找到确切问题的确切答案。此类方法无法解决当今大多数大型且复杂的计算模型。该研究培训小组专注于开发方法,旨在为近似问题提供近似答案,从而为适应 21 世纪问题的新一代数值工具打开大门。该计划为本科生、研究生和博士后参与者提供培训机会,他们可以从垂直结构工作组的整合中受益。对于科学、技术、工程和数学 (STEM) 学生来说,拥有超越技术专业知识的专业技能非常重要;他们必须能够以清晰、引人注目和引人入胜的方式向非技术受众传达他们的结果。通过强调多层次的工作组,该计划为其参与者提供了一个主要的培训场地,以获得弥合学科分歧所需的沟通技能,这是解决大多数社会重大挑战的工作所需要的。该计划还涉及在线和校园新课程材料的开发,以反映和解决当今科学计算中的挑战。作为连续数学问题的算法研究的数值分析范式需要更新。越来越多的数据密集型应用程序可以通过图形或网络的离散数学更好地描述,而不是通过连续数学的平滑流形。此外,当前的计算模型通常既不适定也不适定。需要新的方法。该计划通过使用随机化作为关键的科学工具来解决这一迫切需求。该研究围绕数值线性代数、非线性求解器和全局敏感性分析三个互补的主旨进行组织。通过分析随机化或损坏数据引起的扰动对数值解的影响,前两个推力填补了大扰动和低精度下数值分析理论基础的关键空白:甚至必须重新审视数值解的概念。第三个重点旨在通过新颖的敏感性分析方法和替代模型的使用来降低模型的复杂性;这一推动力既利用了前两个奖项,又为前两个奖项做出了贡献。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying rare events in spotting: How far do wildfires spread?
量化发现中的罕见事件:野火蔓延多远?
- DOI:10.1016/j.firesaf.2022.103630
- 发表时间:2022-07
- 期刊:
- 影响因子:3.1
- 作者:Mendez, Alexander;Farazmand, Mohammad
- 通讯作者:Farazmand, Mohammad
Hyper-differential sensitivity analysis for inverse problems constrained by partial differential equations
偏微分方程约束反问题的超微分灵敏度分析
- DOI:10.1088/1361-6420/abaf63
- 发表时间:2020-12
- 期刊:
- 影响因子:2.1
- 作者:Sunseri, Isaac;Hart, Joseph;van Bloemen Waanders, Bart;Alexanderian, Alen
- 通讯作者:Alexanderian, Alen
Optimal experimental design for infinite-dimensional Bayesian inverse problems governed by PDEs: a review
由偏微分方程控制的无限维贝叶斯反问题的最优实验设计:综述
- DOI:10.1088/1361-6420/abe10c
- 发表时间:2021-03
- 期刊:
- 影响因子:2.1
- 作者:Alexanderian; Alen
- 通讯作者:Alen
Bayesian inference and uncertainty propagation using efficient fractional-order viscoelastic models for dielectric elastomers
使用介电弹性体的高效分数阶粘弹性模型进行贝叶斯推理和不确定性传播
- DOI:10.1177/1045389x20969847
- 发表时间:2021-03
- 期刊:
- 影响因子:2.7
- 作者:Miles, Paul R;Pash, Graham T;Smith, Ralph C;Oates, William S
- 通讯作者:Oates, William S
Sensitivity-Driven Adaptive Construction of Reduced-space Surrogates
灵敏度驱动的缩减空间代理的自适应构建
- DOI:
- 发表时间:2018-12
- 期刊:
- 影响因子:2.5
- 作者:Vohra; M.
- 通讯作者:M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilse C.F. Ipsen其他文献
Ilse C.F. Ipsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilse C.F. Ipsen', 18)}}的其他基金
NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
- 批准号:
2209510 - 财政年份:2022
- 资助金额:
$ 214万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Randomization as a Resource for Rapid Prototyping
FRG:协作研究:随机化作为快速原型制作的资源
- 批准号:
1760374 - 财政年份:2018
- 资助金额:
$ 214万 - 项目类别:
Standard Grant
2015 Gene Golub SIAM Summer School (G2S3): Randomization in Numerical Linear Algebra (RandNLA)
2015 Gene Golub SIAM 暑期学校 (G2S3):数值线性代数随机化 (RandNLA)
- 批准号:
1522231 - 财政年份:2015
- 资助金额:
$ 214万 - 项目类别:
Standard Grant
Early-Career and Student Support for the XIX Householder Symposium, June 8-13, 2014
第十九届住户研讨会的早期职业和学生支持,2014 年 6 月 8 日至 13 日
- 批准号:
1415152 - 财政年份:2014
- 资助金额:
$ 214万 - 项目类别:
Standard Grant
Early Career and Student Support for the XVIII Householder Symposium
第十八届住户研讨会的早期职业和学生支持
- 批准号:
1125906 - 财政年份:2011
- 资助金额:
$ 214万 - 项目类别:
Standard Grant
EAGER: Numerical Accuracy of Randomized Algorithms for Matrix Multiplication and Least Squares
EAGER:矩阵乘法和最小二乘随机算法的数值精度
- 批准号:
1145383 - 财政年份:2011
- 资助金额:
$ 214万 - 项目类别:
Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
0209695 - 财政年份:2002
- 资助金额:
$ 214万 - 项目类别:
Standard Grant
Mathematical Sciences: Workshop on Krylov Subspace Methods and Applications
数学科学:克雷洛夫子空间方法与应用研讨会
- 批准号:
9415578 - 财政年份:1994
- 资助金额:
$ 214万 - 项目类别:
Standard Grant
Relative Perturbation Techniques for Eigenvalue and Singular Value Decompositions
特征值和奇异值分解的相对扰动技术
- 批准号:
9400921 - 财政年份:1994
- 资助金额:
$ 214万 - 项目类别:
Continuing Grant
Numerical Control Structures for the Computation of Large Eigenvalue and Singular Value Problems
用于计算大特征值和奇异值问题的数控结构
- 批准号:
9496115 - 财政年份:1993
- 资助金额:
$ 214万 - 项目类别:
Continuing Grant
相似国自然基金
不确定潜能的克隆性造血与急性缺血性卒中功能预后的孟德尔随机化研究
- 批准号:82301481
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于双生子孟德尔随机化的SGLT2抑制剂与冠心病的关联及其通路研究
- 批准号:82304223
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于遗传大数据探究外周血白细胞计数与帕金森病的因果关系:孟德尔随机化研究和遗传风险评分分析
- 批准号:82301434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于孟德尔随机化法和随机回归模型建立纵向性状全转录组关联分析新方法
- 批准号:32370675
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
$ 214万 - 项目类别:
Research Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
- 批准号:
2309446 - 财政年份:2023
- 资助金额:
$ 214万 - 项目类别:
Standard Grant
DMS-EPSRC:Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
2313434 - 财政年份:2023
- 资助金额:
$ 214万 - 项目类别:
Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
- 批准号:
2309445 - 财政年份:2023
- 资助金额:
$ 214万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152661 - 财政年份:2022
- 资助金额:
$ 214万 - 项目类别:
Standard Grant