COLLABORATIVE RESEARCH: Disposable All-Graphene Microfluidic Biosensor System for Real-Time Foodborne Pathogen Detection in Food Processing Facilities

合作研究:用于食品加工设施中实时食源性病原体检测的一次性全石墨烯微流体生物传感器系统

基本信息

  • 批准号:
    1756999
  • 负责人:
  • 金额:
    $ 18.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-16 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Disease-causing bacteria found in food causes 48 million illnesses and $15.6 billion in health-related costs annually in the U.S. alone. This project will create bacteria testing technology (i.e., sensors) that are cost-effective, rapid, and easy-to-use to ensure wide use in food processing facilities. The sensors will work and look much like a home blood sugar test device that will permit users to test for pathogens from swab samples taken from virtually any surface including equipment and floor drains. Multiple sensors will be developed and connected to the internet so that measurements can be collected and analyzed simultaneously at a central location. Contamination breakouts will therefore be quickly identified and pinpointed so that appropriate corrective measures can be taken prior to the contaminated food reaches the market. Outreach activities will include hands-on exhibit on sensors and mentoring students in Women Explore Engineering Summer Camp.Foodborne pathogen detection in processing facilities is infrequently performed because of the cost ($8-10 per test), time (24-48 h for results), and low sensitivity (~100 CFU/mL detection limits that usually require sample pre-enrichment) associated with current laboratory test techniques. Thus, the sources of pathogen contamination are not determined in a timely fashion prior to the contaminated food reaching the consumer. Field deployable foodborne pathogen biosensors that are low-cost, rapid (a few minutes), and highly sensitive ( 5 CFU/mL detection limits) are highly desirable, but currently do not exist. The objective of the proposed work is to develop effective field deployable biosensors for Salmonella in food processing facility that pose high risk for food contamination (e.g., equipment, work surfaces). Multiple biosensors will be created and used within a food processing facility, while the measured data will be streamed to a central location via the internet. Through the Internet of Things (IoT) paradigm the sensor network will enable simultaneous monitoring of pathogens and sanitation efficacy so that appropriate action can be implemented. The proposed biosensor is expected to exhibit a sensitivity comparable to, if not better than, current laboratory-based Salmonella detection methods. The project specific aims are: Aim 1: Develop a graphene-based microfluidic biosensor system; Aim 2: Biofunctionalize and evaluate the biosensor system for foodborne pathogen detection; Aim 3: Evaluate data from multiple biosensors within a food processing facility via an IoT paradigm. The graphene-based biosensor and corresponding microfluidics system uses inkjet printing and rapid laser-pulse annealing to create graphene surfaces with high electrical conductivity, tunable hydrophobicity, and nanostructured morphologies that can operate synergistically to detect Salmonella with a high sensitivity and without the need for pre-enrichment techniques. The graphene electrodes will be biofunctionalized with aptamers that have binding affinities similar to monoclonal antibodies. The aptamers selectivity to the targeted Salmonella strains will be evaluated within the presence of other potential interferents (e.g., other gram-negative bacteria) in buffer, chicken broth, carcass rinsate, and swab samples. The biosensor will be optimized to negate false positives and false negatives. If the aptamers are not sufficiently sensitive or selective than monoclonal antibodies (e.g. Anti-Salmonella) will be used instead. Small-scale food processing facilities at TAMU, ISU, and AES Controls (industry collaborator) will be used to help validate the sensor system in a food processing setting. Also, the Virtual Reality Applications Center at ISU (Co-PI is the co-director) will directly work in developing this ad-hoc network. Outreach activities the development of an interactive exhibit that displays how nanoscale and microscale patterning induces hydrophobicity, IoT-based learning modules for underrepresented minority students, hands-on demonstrations on biosensor design and foodborne pathogen detection and mentoring young women in the Women Explore Engineering (WEE) summer camp.
仅在美国,食品中发现的致病细菌每年就会导致 4800 万人患病,并造成 156 亿美元的健康相关费用。该项目将创建经济高效、快速且易于使用的细菌检测技术(即传感器),以确保在食品加工设施中广泛使用。这些传感器的工作原理和外观很像家用血糖测试设备,允许用户从几乎任何表面(包括设备和地漏)采集的拭子样本中检测病原体。 将开发多个传感器并将其连接到互联网,以便可以在中心位置同时收集和分析测量结果。因此,污染爆发将被快速识别和查明,以便在受污染的食品进入市场之前采取适当的纠正措施。 外展活动将包括传感器实践展览以及为女性探索工程夏令营的学生提供指导。由于成本(每次测试 8-10 美元)和时间(24-48 小时出结果),加工设施中的食源性病原体检测很少进行,以及与当前实验室测试技术相关的低灵敏度(~100 CFU/mL 检测限,通常需要样品预富集)。因此,在受污染的食品到达消费者之前,无法及时确定病原体污染源。低成本、快速(几分钟)和高灵敏度(5 CFU/mL 检测限)的现场可部署食源性病原体生物传感器非常理想,但目前还不存在。拟议工作的目标是为食品加工设施(例如设备、工作表面)中的沙门氏菌开发有效的现场可部署生物传感器。将在食品加工设施内创建和使用多个生物传感器,同时测量的数据将通过互联网传输到中央位置。通过物联网(IoT)范式,传感器网络将能够同时监测病原体和卫生效果,以便采取适当的行动。所提出的生物传感器预计将表现出与当前基于实验室的沙门氏菌检测方法相当的灵敏度,甚至更好。 该项目的具体目标是: 目标1:开发基于石墨烯的微流控生物传感器系统;目标2:生物功能化和评估用于食源性病原体检测的生物传感器系统;目标 3:通过物联网范例评估食品加工设施内多个生物传感器的数据。基于石墨烯的生物传感器和相应的微流体系统使用喷墨印刷和快速激光脉冲退火来创建具有高导电性、可调疏水性和纳米结构形态的石墨烯表面,可以协同操作以高灵敏度检测沙门氏菌,而无需预先准备。 - 浓缩技术。石墨烯电极将使用具有与单克隆抗体相似的结合亲和力的适体进行生物功能化。将在缓冲液、鸡汤、屠体冲洗液和拭子样品中存在其他潜在干扰物(例如其他革兰氏阴性细菌)的情况下评估适体对目标沙门氏菌菌株的选择性。生物传感器将被优化以消除误报和漏报。如果适体的敏感性或选择性不够,则将使用单克隆抗体(例如抗沙门氏菌)。 TAMU、ISU 和 AES Controls(行业合作者)的小型食品加工设施将用于帮助验证食品加工环境中的传感器系统。此外,ISU 的虚拟现实应用中心(Co-PI 是联合主任)将直接致力于开发这个临时网络。外展活动:开发一个互动展览,展示纳米级和微米级图案如何诱导疏水性,为代表性不足的少数族裔学生提供基于物联网的学习模块,生物传感器设计和食源性病原体检测的实践演示,并指导女性探索工程(WEE)中的年轻女性)夏令营。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Laser-induced graphene electrodes for electrochemical ion sensing, pesticide monitoring, and water splitting
  • DOI:
    10.1007/s00216-021-03519-w
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    I. Kucherenko;Bolin Chen;Zachary T. Johnson;Alexander Wilkins;Delaney Sanborn;Natalie Figueroa-Félix
  • 通讯作者:
    I. Kucherenko;Bolin Chen;Zachary T. Johnson;Alexander Wilkins;Delaney Sanborn;Natalie Figueroa-Félix
Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of Salmonella enterica in Chicken Broth
  • DOI:
    10.1021/acssensors.9b02345
  • 发表时间:
    2020-07-24
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Soares, Raquel R. A.;Hjort, Robert G.;Gomes, Carmen L.
  • 通讯作者:
    Gomes, Carmen L.
Stamped multilayer graphene laminates for disposable in-field electrodes: application to electrochemical sensing of hydrogen peroxide and glucose
  • DOI:
    10.1007/s00604-019-3639-7
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Loreen R Stromberg;John Hondred;Delaney Sanborn;Deyny L Mendivelso-Pérez;S. Ramesh;I. Rivero;Josh Kogot;Emily A. Smith;C. Gomes;J. Claussen
  • 通讯作者:
    Loreen R Stromberg;John Hondred;Delaney Sanborn;Deyny L Mendivelso-Pérez;S. Ramesh;I. Rivero;Josh Kogot;Emily A. Smith;C. Gomes;J. Claussen
Electrochemical cotinine sensing with a molecularly imprinted polymer on a graphene-platinum nanoparticle modified carbon electrode towards cigarette smoke exposure monitoring
  • DOI:
    10.1016/j.snb.2019.02.032
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kshama Parate;C. Karunakaran;J. Claussen
  • 通讯作者:
    Kshama Parate;C. Karunakaran;J. Claussen
Enhanced electrochemical biosensor and supercapacitor with 3D porous architectured graphene via salt impregnated inkjet maskless lithography
  • DOI:
    10.1039/c8nh00377g
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    John Hondred;Igor L. Medintz;J. Claussen
  • 通讯作者:
    John Hondred;Igor L. Medintz;J. Claussen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carmen Gomes其他文献

Integrated Sensing Systems for Monitoring Interrelated Physiological Parameters in Young and Aged Adults
用于监测年轻人和老年人相关生理参数的集成传感系统
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Mark Sprowls;Michael Serhan;En;Lancy Lin;Christopher W. Frames;I. Kucherenko;Keyvan Mollaeian;Yang Li;V. Jammula;D. Logeswaran;M. Khine;Yezhou Yang;T. Lockhart;J. Claussen;Liang Dong;Julian J‐L Chen;Juan;Carmen Gomes;Daejin Kim;Teresa Wu;J. Margrett;Balaji Narasimhan;E. Forzani
  • 通讯作者:
    E. Forzani

Carmen Gomes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carmen Gomes', 18)}}的其他基金

IUCRC Phase I Iowa State University: Center for Soil Technologies (SoilTech)
IUCRC 第一阶段爱荷华州立大学:土壤技术中心 (SoilTech)
  • 批准号:
    2231632
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Planning IUCRC at Iowa State University: Center for Soil Dynamics Technologies
爱荷华州立大学 IUCCRC 规划:土壤动力学技术中心
  • 批准号:
    1922531
  • 财政年份:
    2019
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Disposable All-Graphene Microfluidic Biosensor System for Real-Time Foodborne Pathogen Detection in Food Processing Facilities
合作研究:用于食品加工设施中实时食源性病原体检测的一次性全石墨烯微流体生物传感器系统
  • 批准号:
    1706817
  • 财政年份:
    2017
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant

相似国自然基金

基于多种竞争失效机理的复杂一次性设备的可靠性分析研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于质谱流式的临床大队列样本一次性免疫细胞编码与分析技术研究
  • 批准号:
    81871448
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
基于一次性密码多符号重叠编解码的保密光通信技术的研究
  • 批准号:
    61601292
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
混沌在生成一次性密钥流及云计算环境下图像加密中的应用研究
  • 批准号:
    61363082
  • 批准年份:
    2013
  • 资助金额:
    43.0 万元
  • 项目类别:
    地区科学基金项目
基于数据挖掘技术的一次性医用材料费用控制研究
  • 批准号:
    71373175
  • 批准年份:
    2013
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

COLLABORATIVE RESEARCH: Disposable All-Graphene Microfluidic Biosensor System for Real-Time Foodborne Pathogen Detection in Food Processing Facilities
合作研究:用于食品加工设施中实时食源性病原体检测的一次性全石墨烯微流体生物传感器系统
  • 批准号:
    1706817
  • 财政年份:
    2017
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Disposable All-Graphene Microfluidic Biosensor System for Real-Time Foodborne Pathogen Detection in Food Processing Facilities
合作研究:用于食品加工设施中实时食源性病原体检测的一次性全石墨烯微流体生物传感器系统
  • 批准号:
    1706994
  • 财政年份:
    2017
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
BE-MUSES/Collaborative Research: Health Protective Textiles: Bridging the Disposable/Reusable Divide
BE-MUSES/合作研究:健康防护纺织品:弥合一次性/可重复使用的鸿沟
  • 批准号:
    0424716
  • 财政年份:
    2004
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
BE-MUSES/Collaborative Research: Health Protective Textiles: Bridging the Disposable/Reusable Divide
BE-MUSES/合作研究:健康防护纺织品:弥合一次性/可重复使用的鸿沟
  • 批准号:
    0443648
  • 财政年份:
    2004
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
BE-MUSES/Collaborative Research: Health Protective Textiles: Bridging the Disposable/Reusable Divide
BE-MUSES/合作研究:健康防护纺织品:弥合一次性/可重复使用的鸿沟
  • 批准号:
    0424514
  • 财政年份:
    2004
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了