CRII: III: Generative Models for Robust Real-Time Analysis of Complex Dynamic Networks

CRII:III:复杂动态网络鲁棒实时分析的生成模型

基本信息

  • 批准号:
    1755824
  • 负责人:
  • 金额:
    $ 17.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Many complex systems in the computer, information, biological, and social sciences can be represented as networks with nodes denoting objects and edges denoting relationships between the objects. Such complex network structures often change continuously over time through the observation of events at irregular times, such as networks of social interactions between people via messages, networks of transactions between organizations, and networks of face-to-face interactions between people. This project formulates a range of models of varying complexity for continuously evolving networks to enable robust real-time analysis of these networks in a variety of application settings. Such dynamic network models could be used in many scientific disciplines and in public health applications, including modeling the spread of airborne viruses between people. The project trains new graduate and undergraduate students, including female students from the University of Toledo's ACM-W chapter, in practical data science research involving a variety of data types and sources. The project also results in the development of an open-source Python software package, DyNetworkX, for analyzing dynamic networks along with educational materials on dynamic networks through a series of lectures and hands-on tutorials using the DyNetworkX package.This project aims to create a range of probabilistic generative models for continuous-time event-based networks that are flexible enough to account for the types of complex structures seen in real network data, including node popularity, community structure, reciprocity, and transitivity. The project also seeks to develop efficient incremental inference algorithms and discrete-time approximations that allow for real-time analysis of extremely large social networks that are rapidly changing over time, such as those seen in online social network data. The proposed range of models allows an analyst to trade off flexibility and scalability depending on the needs of a particular application. Two main applications are targeted: prediction of the spread of infectious disease over networks of physical proximity and real-time summarization and prediction of online social network activity. Deliverable assets of the project include new probabilistic models and inference algorithms, the DyNetworkX open-source software package, and educational materials on dynamic networks. These are intended to benefit researchers and educators in the computer and information sciences as well as researchers in other fields such as the social and economic sciences, software engineers, and hobbyists who work with dynamic network data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机,信息,生物学和社会科学中的许多复杂系统都可以表示为带有节点的网络,表示对象和边缘表示对象之间的关系。这种复杂的网络结构通常会随着时间的流逝而在不规则时期观察到事件,例如通过消息之间的社交互动网络,组织之间的交易网络以及人与人之间面对面互动的网络。该项目为连续发展的网络制定了一系列不同复杂性的模型,以在各种应用程序设置中对这些网络进行强大的实时分析。这种动态网络模型可用于许多科学学科和公共卫生应用中,包括对空中病毒之间的传播建模。该项目在涉及各种数据类型和来源的实用数据科学研究中训练新的研究生和本科生,包括来自托莱多ACM-W分会的女学生。 The project also results in the development of an open-source Python software package, DyNetworkX, for analyzing dynamic networks along with educational materials on dynamic networks through a series of lectures and hands-on tutorials using the DyNetworkX package.This project aims to create a range of probabilistic generative models for continuous-time event-based networks that are flexible enough to account for the types of complex structures seen in real network data, including node popularity, community结构,互惠和传递性。该项目还旨在开发有效的增量推理算法和离散的时间近似,这些算法允许对随着时间的推移迅速变化的极大社交网络进行实时分析,例如在线社交网络数据中所看到的。提出的模型范围允许分析师根据特定应用的需求进行权衡灵活性和可伸缩性。两个主要应用是针对性的:预测传染病在身体接近和实时摘要网络上的传播以及在线社交网络活动的预测。该项目的可交付资产包括新的概率模型和推理算法,Dynetworkx开源软件包以及动态网络的教育材料。这些旨在使计算机和信息科学领域的研究人员和教育工作者以及其他领域的研究人员,例如社会和经济科学,软件工程师和与动态网络数据一起工作的业余爱好者。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力功能和广泛影响的评估来审查CRITERIA的评估。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Mutually Exciting Latent Space Hawkes Process Model for Continuous-time Networks
  • DOI:
    10.48550/arxiv.2205.09263
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhipeng Huang;Hadeel Soliman;Subhadeep Paul;Kevin S. Xu
  • 通讯作者:
    Zhipeng Huang;Hadeel Soliman;Subhadeep Paul;Kevin S. Xu
Analyzing escalations in militarized interstate disputes using motifs in temporal networks
使用时间网络中的主题分析军事化国家间争端的升级
Counteracting filter bubbles with homophily-aware link recommendations
通过同质感知链接推荐来消除过滤气泡
  • DOI:
    10.1007/978-3-031-17114-7_15
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Warton, Robert;Volny, Chris;Xu, Kevin S.
  • 通讯作者:
    Xu, Kevin S.
A hybrid adjacency and time-based data structure for analysis of temporal networks
用于分析时态网络的混合邻接和基于时间的数据结构
Personalized Degrees: Effects on Link Formation in Dynamic Networks from an Egocentric Perspective
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Xu其他文献

Blockade of receptor for advanced glycation end products in a model of type 1 diabetic leukoencephalopathy. Diabetes. 19 November 2012 [Epub ahead of print]
1 型糖尿病白质脑病模型中晚期糖基化终产物受体的阻断。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Natalia Rincon;Kevin Xu;Jemma Li;José A. Martinez;Geeta S. Singh;David Han;P. Lalli;Amit Ayer;Kevin Tse;Lingling Rong;Ann Marie Schmidt;Cory Toth
  • 通讯作者:
    Cory Toth
Building Real-World Chatbot Interviewers: Lessons from a Wizard-of-Oz Field Study
构建真实世界的聊天机器人面试官:绿野仙踪实地研究的经验教训
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michelle X. Zhou;Carolyn Wang;G. Mark;Huahai Yang;Kevin Xu
  • 通讯作者:
    Kevin Xu
RETRACTED: Differential impact of diabetes and hypertension in the brain: Adverse effects in grey matter
撤回:糖尿病和高血压对大脑的不同影响:对灰质的不利影响
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    A. DeVisser;Christina Yang;Amanda Herring;José A. Martinez;Alma Rosales;I. Poliakov;Amit Ayer;Alexandra Garven;Shaila Zaver;Natalia Rincon;Kevin Xu;U. Tuor;A. Schmidt;C. Toth
  • 通讯作者:
    C. Toth
Relationships between Oncologist Gender, Participatory Decision Making, Anxiety and Breast Cancer Care
肿瘤科医生性别、参与决策、焦虑与乳腺癌护理之间的关系
NanoBlot: A Simple Tool for Visualization of RNA Isoform Usage From Third Generation RNA-sequencing Data
NanoBlot:从第三代 RNA 测序数据中可视化 RNA 同工型使用情况的简单工具
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sam Demario;Kevin Xu;Kevin He;G. Chanfreau
  • 通讯作者:
    G. Chanfreau

Kevin Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Xu', 18)}}的其他基金

CAREER: Model-based Analysis of Dynamic Networks using Continuous-time Network Models
职业:使用连续时间网络模型对动态网络进行基于模型的分析
  • 批准号:
    2318751
  • 财政年份:
    2022
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Continuing Grant
CAREER: Model-based Analysis of Dynamic Networks using Continuous-time Network Models
职业:使用连续时间网络模型对动态网络进行基于模型的分析
  • 批准号:
    2047955
  • 财政年份:
    2021
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Continuing Grant
ATD: Collaborative Research: Spatio-Temporal Data Analysis with Dynamic Network Models
ATD:协作研究:使用动态网络模型进行时空数据分析
  • 批准号:
    1830412
  • 财政年份:
    2018
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Continuing Grant

相似国自然基金

异化铁还原菌介导下Fe(II)/Fe(III)循环过程中的活性氧生成机制研究
  • 批准号:
    22276206
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
异化铁还原菌介导下Fe(II)/Fe(III)循环过程中的活性氧生成机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于原位生成Cu(III)选择性氧化的UV/过硫酸盐体系强化去除Cu(II)络合物机理
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于原位生成Cu(III)选择性氧化的UV/过硫酸盐体系强化去除Cu(II)络合物机理
  • 批准号:
    52170092
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
白术内酯III通过孤核受体Nur77调控肝细胞酮体生成抗肝纤维化的作用与机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

III:Small: Interpretable Deep Generative Models for Drug Development
III:Small:可解释的药物开发深度生成模型
  • 批准号:
    2133650
  • 财政年份:
    2021
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Deep Generative Modeling for Urban and Archaeological Recovery
III:媒介:协作研究:城市和考古恢复的深度生成模型
  • 批准号:
    2106766
  • 财政年份:
    2021
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Deep Generative Modeling for Urban and Archaeological Recovery
III:媒介:协作研究:城市和考古恢复的深度生成模型
  • 批准号:
    2107096
  • 财政年份:
    2021
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Deep Generative Modeling for Urban and Archaeological Recovery
III:媒介:协作研究:城市和考古恢复的深度生成模型
  • 批准号:
    2106717
  • 财政年份:
    2021
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Standard Grant
III: Small: Graph Generative Deep Learning for Protein Structure Prediction
III:小:用于蛋白质结构预测的图生成深度学习
  • 批准号:
    2110926
  • 财政年份:
    2020
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了