I-Corps: Enabling Electronic Design using Data Intelligence
I-Corps:使用数据智能实现电子设计
基本信息
- 批准号:1740531
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project stems from its data intelligence approach to empower electronic design automation. The semiconductor industry provides vital hardware backbone of the information technology age through an extremely wide range of integrated circuits (ICs) in computing devices and consumer electronics. Modern IC development process is bottlenecked by growing chip design complexity, e.g. measured by large device count and functionality diversity, and ever-demanding requirements on computing performance and power/energy efficiency. Advanced IC manufacturing processes are costly, and yet have unavoidable process variations, making fabricated chips susceptible to failures. With its revenue reaching $7.8 billion in 2015, the electronic design automation (EDA) industry supplies indispensable tools and methodologies that make IC design possible. The potential market and societal impact of the proposed EDA innovation is substantial. This technology can help semiconductor and chip design companies develop integrated circuits of improved performance and robustness with a reduced time-to-market and development cost.This I-Corps project demonstrates novel machine learning algorithms targeting electronic design automation. As the complexity of integrated circuits scales up rapidly, the need for smart design tools is prominent. The EDA industry is in the early phase of rapid integration of machine learning algorithms into commercial IC design flows. The learning methods focused in this project significantly improve the accuracy of statistical regression and classification over the current-state-of-the-art, and offer the much needed understanding of the underlying structure of the data. Built upon the focused machine learning algorithms, the targeted EDA technology can efficiently process simulation or measured performance data of existing chip designs, and intelligently learn the complex hidden relationships between performance specifications, design parameters, and manufacturing conditions. As a result, it offers a powerful data science solution to IC design optimization, verification, and debug. Implemented as high-performance parallel software design tools, the technology will bring the power of machine learning to the field of electronic design.
该 I-Corps 项目更广泛的影响/商业潜力源于其支持电子设计自动化的数据智能方法。半导体行业通过计算设备和消费电子产品中极其广泛的集成电路 (IC) 为信息技术时代提供了重要的硬件支柱。 现代 IC 开发流程因芯片设计复杂性不断增加而受到瓶颈,例如通过大量设备数量和功能多样性以及对计算性能和功率/能源效率的日益苛刻的要求来衡量。先进的 IC 制造工艺成本高昂,而且不可避免地存在工艺变化,使得制造出来的芯片容易出现故障。电子设计自动化 (EDA) 行业 2015 年的收入达到 78 亿美元,为 IC 设计提供了不可或缺的工具和方法。拟议的 EDA 创新的潜在市场和社会影响是巨大的。该技术可以帮助半导体和芯片设计公司开发具有更高性能和鲁棒性的集成电路,同时缩短上市时间和开发成本。该 I-Corps 项目展示了针对电子设计自动化的新颖机器学习算法。随着集成电路的复杂性迅速增加,对智能设计工具的需求日益突出。 EDA 行业正处于将机器学习算法快速集成到商业 IC 设计流程中的早期阶段。该项目重点关注的学习方法显着提高了当前最先进的统计回归和分类的准确性,并提供了对数据底层结构急需的理解。基于针对性的机器学习算法,有针对性的 EDA 技术可以有效地处理现有芯片设计的仿真或测量的性能数据,并智能地学习性能规格、设计参数和制造条件之间的复杂隐藏关系。因此,它为 IC 设计优化、验证和调试提供了强大的数据科学解决方案。 该技术作为高性能并行软件设计工具实施,将把机器学习的力量带入电子设计领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Li其他文献
Nonlinear coupling in triangular triple-core photonic crystal fibers.
三角形三芯光子晶体光纤中的非线性耦合。
- DOI:
10.1364/oe.18.026828 - 发表时间:
2010-12-20 - 期刊:
- 影响因子:3.8
- 作者:
Peng Li;Jianlin Zhao;Xiaojuan Zhang - 通讯作者:
Xiaojuan Zhang
Study on the Emulsifying Properties of Tilapia Skin Gelatin
罗非鱼皮明胶乳化性能的研究
- DOI:
10.4028/www.scientific.net/amr.690-693.1390 - 发表时间:
2013-05-01 - 期刊:
- 影响因子:0
- 作者:
G. Xia;Xuanri Shen;Zhe Liu;Peng Li;Zhi Qiang Jiu - 通讯作者:
Zhi Qiang Jiu
Biochemical and molecular characterization of a novel high activity creatine amidinohydrolase from Arthrobacter nicotianae strain 02181
烟草节杆菌菌株 02181 新型高活性肌酸脒基水解酶的生化和分子表征
- DOI:
10.1016/j.procbio.2008.12.014 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:4.4
- 作者:
Qiang Zhi;P. Kong;J. Zang;Youhong Cui;Shuhui Li;Peng Li;Weijing Yi;Y. Wang;An Chen;Chuanmin Hu - 通讯作者:
Chuanmin Hu
Crowd Counting via Enhanced Feature Channel Convolutional Neural Network
通过增强型特征通道卷积神经网络进行人群计数
- DOI:
10.1109/ictai.2019.00118 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:0
- 作者:
Yinlong Bian;Jiehong Shen;Xin Xiong;Ying Li;Wei;Peng Li - 通讯作者:
Peng Li
Adtrp regulates thermogenic activity of adipose tissue via mediating the secretion of S100b
Adtrp 通过介导 S100b 的分泌调节脂肪组织的产热活性
- DOI:
10.1007/s00018-022-04441-9 - 发表时间:
2022-07-08 - 期刊:
- 影响因子:8
- 作者:
Peng Li;Runjie Song;Yaqi Du;Huijiao Liu;Xiangdong Li - 通讯作者:
Xiangdong Li
Peng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Li', 18)}}的其他基金
SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
- 批准号:
2334380 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
- 批准号:
2310170 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Towards fault-tolerant, reliable, efficient, and economical DC-DC conversion for DC grid (FREE-DC)
面向直流电网实现容错、可靠、高效且经济的 DC-DC 转换 (FREE-DC)
- 批准号:
EP/X031608/1 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Research Grant
CAREER: Compact digital biosensing system enabled by localized acoustic streaming
职业:由局部声流驱动的紧凑型数字生物传感系统
- 批准号:
2144216 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
- 批准号:
1956313 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
- 批准号:
2000851 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
- 批准号:
1911067 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
- 批准号:
1948201 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
E2CDA: Type II: Self-Adaptive Reservoir Computing with Spiking Neurons: Learning Algorithms and Processor Architectures
E2CDA:类型 II:带尖峰神经元的自适应储层计算:学习算法和处理器架构
- 批准号:
1940761 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
- 批准号:
1810125 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
ERI: Enabling tunable electronic device fabrication on flexible substrates using Barium Strontium Titanate (BST) printable ink development
ERI:使用钛酸锶钡 (BST) 可印刷油墨开发,在柔性基板上实现可调电子设备制造
- 批准号:
2301693 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Enabling High-Impact Collaborative Clinical and Translational Research through Effective Information Management: A Prototype Intervention
通过有效的信息管理实现高影响力的协作临床和转化研究:原型干预
- 批准号:
10637143 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Development of novel quantum vacuum-based electronic devices platform and enabling its microfabrication methods.
开发新型基于量子真空的电子器件平台并实现其微加工方法。
- 批准号:
559532-2020 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Alliance Grants
Enabling technologies featuring nanomaterials for portable and wearable polymeric microfluidic and electronic platforms
用于便携式和可穿戴聚合物微流体和电子平台的纳米材料使能技术
- 批准号:
RGPIN-2019-05586 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Enabling technologies featuring nanomaterials for portable and wearable polymeric microfluidic and electronic platforms
用于便携式和可穿戴聚合物微流体和电子平台的纳米材料使能技术
- 批准号:
RGPIN-2019-05586 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual