CAREER: Unraveling Chemical Consequences of Non-adiabatic Energy Transfer at the Gas-Surface Interface
职业:揭示气体-表面界面非绝热能量转移的化学后果
基本信息
- 批准号:1753273
- 负责人:
- 金额:$ 62.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sharani Roy of the University of Tennessee is supported by a CAREER award from the Chemical Theory, Models and Computational Methods program in the Chemistry Division to theoretically investigate the role of nonadiabatic energy transfer in chemical processes at the gas-surface interface. Chemistry at solid surfaces and interfaces is the foundation of a wide range of technologies ranging from heterogeneous catalysis, gas storage, and chemical sensing, to nanoelectronics, nanolithography, and solar cells. It also governs natural phenomena, such as corrosion and oxidation processes, e.g., the rusting of iron and the weathering of rocks. Even interstellar formation of molecules occurs on the surfaces of dust particles. In all the above examples, the fundamental interactions that govern the processes are gas-surface interactions. Each complex surface process is comprised of a series of elementary steps, such as the scattering, adsorption, diffusion, desorption, and reactions of gaseous atoms and molecules on solid surfaces. Therefore, a detailed understanding of the gas-surface interface is essential to explain such diverse surface processes. The Roy group investigates fundamental gas-surface interactions underlying different surface and interface phenomena, with focus on phenomena that involve strong coupling between nuclear motion and electronic motion. This coupling can have important and unexpected consequences on the rates and pathways of chemical processes at surfaces. Dr. Roy's research is integrated with a multi-component education plan that includes the development of courses on computational chemistry, surface chemistry, and high-performance computing in the context of scientific computing. In addition, Dr. Roy plans to organize a symposium on chemical reactions and dynamics at surfaces in collaboration with the Oak Ridge National Laboratory.Theoretical and computational research in surface and interface chemistry often involves studies of chemical dynamics in which the motion of atoms and molecules on surfaces is simulated using classical mechanics. This concept of molecular dynamics (MD) simulations has been very successful in describing gas-surface interactions, and has provided valuable qualitative insight into complicated surface processes. Conventional MD relies on the ubiquitous Born-Oppenheimer or adiabatic approximation, which assumes that nuclear motion is uncoupled from electronic motion. However, there are several fundamentally and industrially important gas-surface systems in which this approximation breaks down. Therefore, it is critical to develop accurate and efficient dynamics methods that can be applied to understand interfacial chemical processes where the adiabatic approximation is weak or invalid. Dr. Roy aims to further develop the 'surface hopping' theoretical method of nonadiabatic dynamics in the context of metal surfaces, and apply it to study strongly nonadiabatic gas-surface phenomena where energy is efficiently transferred between electrons and nuclei. These phenomena include (a) the interaction of hydrogen atoms with a gold surface, (b) the interaction of oxygen atoms with a silver surface, and (c) inelastic electron transport in molecular junctions. The overall goal is to develop a method with broader applicability to surface and interface chemistry that will help to attain a more comprehensive understanding of dynamics beyond the Born-Oppenheimer approximation.
田纳西大学的Sharani Roy得到了化学理论,模型和计算方法计划的职业奖,理论上研究了非绝热能源转移在气体表面接口处化学过程中的作用。固体表面和界面的化学性质是从异质催化,气体存储和化学传感到纳米电子,纳米光刻和太阳能电池的广泛技术的基础。它还控制着自然现象,例如腐蚀和氧化过程,例如铁的生锈和岩石的风化。甚至分子的星际形成也发生在灰尘颗粒的表面上。在上述所有示例中,控制过程的基本相互作用是气体表面相互作用。每个复杂的表面过程均由一系列基本步骤组成,例如散射,吸附,扩散,解吸以及气态原子和固体表面上的分子的反应。因此,对气体表面界面的详细理解对于解释这种不同的表面过程至关重要。罗伊集团研究了不同表面和界面现象的基本气体表面相互作用,重点是涉及核运动和电子运动之间强耦合的现象。这种耦合可能会对表面化学过程的速率和途径产生重要且出乎意料的后果。 Roy博士的研究与多组分的教育计划融为一体,其中包括开发有关科学计算背景下计算化学,表面化学和高性能计算的课程。此外,Roy博士计划与Oak Ridge国家实验室合作组织一个在表面上的化学反应和动力学研讨会。表面和界面化学中的理论和计算研究通常涉及化学动力学的研究,其中原子和分子运动的运动,在表面上使用经典力学模拟。这种分子动力学(MD)模拟的概念在描述气体表面相互作用方面非常成功,并为复杂的表面过程提供了宝贵的定性洞察力。常规的MD依赖于无处不在的未经脑的或绝热的近似,该近似值假设核运动与电子运动没有耦合。但是,有几种从根本和工业上重要的气体表面系统分解的。因此,开发准确有效的动力学方法至关重要,该方法可用于理解绝热近似弱或无效的界面化学过程。 Roy博士的目的是在金属表面的背景下进一步发展非绝热动力学的“表面跳跃”理论方法,并将其应用于强烈的非绝热气体表面现象,其中能量在电子和核之间有效传递。这些现象包括(a)氢原子与金表面的相互作用,(b)氧原子与银表面的相互作用,以及(c)分子连接中的非弹性电子传输。总体目标是开发一种具有更广泛适用于表面和界面化学的方法,这将有助于对Born-Oppenheimer近似以外的动态有更全面的了解。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Insight into Subsurface Adsorption Derived from a Lattice-Gas Model and Monte Carlo Simulations
- DOI:10.1021/acs.jpcc.2c00342
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Carson J Mize;Lonnie D. Crosby;Sara B. Isbill;Sharani Roy
- 通讯作者:Carson J Mize;Lonnie D. Crosby;Sara B. Isbill;Sharani Roy
Correction: Interfacial acidity on the strontium titanate surface: a scaling paradigm and the role of the hydrogen bond
修正:钛酸锶表面的界面酸度:缩放范式和氢键的作用
- DOI:10.1039/d1cp90253a
- 发表时间:2022
- 期刊:
- 影响因子:3.3
- 作者:Chapleski, Robert C.;Chowdhury, Azhad U.;Mason, Kyle R.;Sacci, Robert L.;Doughty, Benjamin;Roy, Sharani
- 通讯作者:Roy, Sharani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharani Roy其他文献
Structure of oxidised silver (1 1 1) and (1 1 0) surfaces
氧化银(1 1 1)和(1 1 0)表面的结构
- DOI:
10.1080/08927022.2016.1268258 - 发表时间:
2017 - 期刊:
- 影响因子:2.1
- 作者:
Sara B. Isbill;Sharani Roy;D. Keffer - 通讯作者:
D. Keffer
Dynamics of Open-Shell Species at Metal Surfaces†
金属表面开壳物质的动力学†
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Sharani Roy;N. Shenvi;J. Tully - 通讯作者:
J. Tully
Melting of 55-atom Morse clusters
55 个原子莫尔斯簇的熔化
- DOI:
10.1063/1.1575194 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Pooja Shah;Sharani Roy;C. Chakravarty - 通讯作者:
C. Chakravarty
Interfacial Acidity on Oxide Surfaces: A Scaling Paradigm and the Role of the Hydrogen Bond
氧化物表面的界面酸度:缩放范式和氢键的作用
- DOI:
10.26434/chemrxiv.12094218.v1 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Robert C. Chapleski;Azhad U. Chowdhury;Kyle Mason;R. Sacci;Benjamin Doughty;Sharani Roy - 通讯作者:
Sharani Roy
Chemistry at molecular junctions: Rotation and dissociation of O2 on the Ag(110) surface induced by a scanning tunneling microscope.
分子连接处的化学:扫描隧道显微镜诱导 Ag(110) 表面上 O2 的旋转和离解。
- DOI:
10.1063/1.4818163 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Sharani Roy;V. Mujica;M. Ratner - 通讯作者:
M. Ratner
Sharani Roy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于大环单体的主链可降解开环易位聚合物的可控合成
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用数值 Green 函数求解开腔体正反散射问题的算法研究
- 批准号:11626054
- 批准年份:2016
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
细菌DNA复制解旋酶水解ATP和解开dsDNA的偶联机制研究
- 批准号:31270783
- 批准年份:2012
- 资助金额:63.0 万元
- 项目类别:面上项目
核酸高级结构生成与解开的动力学及其在动态条件下与蛋白质作用的研究
- 批准号:20572082
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Unraveling the link between rRNA chemical modifications, translation regulation and carcinogenesis
揭示 rRNA 化学修饰、翻译调控和致癌之间的联系
- 批准号:
23K18243 - 财政年份:2023
- 资助金额:
$ 62.45万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Unraveling the corneal and retinal mechanisms of chemical injury
揭示化学损伤的角膜和视网膜机制
- 批准号:
10882069 - 财政年份:2023
- 资助金额:
$ 62.45万 - 项目类别:
Whole embryo screening and integrated omics approach using zebrafish for unraveling mechanisms underlying chemical toxicities
使用斑马鱼的全胚胎筛选和综合组学方法来揭示化学毒性的机制
- 批准号:
22H03746 - 财政年份:2022
- 资助金额:
$ 62.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
- 批准号:
10521825 - 财政年份:2022
- 资助金额:
$ 62.45万 - 项目类别:
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
- 批准号:
10708796 - 财政年份:2022
- 资助金额:
$ 62.45万 - 项目类别: