CAREER: Dynamic water table controls on reactive solute transport near the groundwater-surface water interface
职业:动态地下水位控制地下水-地表水界面附近的反应性溶质输送
基本信息
- 批准号:1752995
- 负责人:
- 金额:$ 54.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Water table fluctuations influence the transport of nutrients and contaminants between soils, groundwater, and surface water. The water table moves up and down over short and long timespans, particularly near rivers. Water table fluctuations introduce oxygen to shallow groundwater, which can react with ecologically important dissolved substances like organic carbon, nitrate, iron and manganese and have cascading effects on contaminants like arsenic. This project aims to understand how groundwater chemistry evolves in response to water table fluctuations over a range of timescales. Field observations, controlled laboratory column experiments, and computer models will quantify the movement of reactive solutes such as oxygen, nitrate, iron, and manganese beneath a fluctuating water table. Results will improve our understanding of dynamic changes in both groundwater and river water quality and the management of these vital water resources. This project will also introduce a broad audience of citizens and future scientists to dynamic surface water-groundwater interactions through the creation of a hands-on outdoor laboratory facility and museum exhibit. Water table fluctuations play an important role in reactive solute transport and water quality near rivers. When the water table rises, entrapped soil air exchanges oxygen with surrounding pore water, which travels downward when the water table falls. The enhanced supply of oxygen stimulates aerobic respiration, nitrification-denitrification, and oxidation of dissolved iron and manganese in groundwater. Water table fluctuations can propagate tens to hundreds of meters into an aquifer in response to changes in river stage. Yet the implications for reactive transport and water quality near rivers remain poorly understood. The overarching goal of this project is to quantify relationships between water table fluctuations, redox transformations, and solute export from aquifers to rivers. This project leverages novel sensor technology to observe the effects of water table fluctuations on groundwater chemistry in controlled column experiments and natural riparian aquifers. The four field sites in this study experience a range of water table fluctuations in response to tides, storms, and seasons. Each site has unique properties that influence reactive transport near the water table. However, pairs of sites also have commonalities in climate, lithology, catchment scale, land use, and geomorphology. Numerical fluid flow and reactive transport models will quantify dynamics in biogeochemical transformation rates and solute fluxes in these riparian aquifers. Observations and model results will be synthesized to generate a quantitative understanding of the effects of water table fluctuations on reactive solute transport in dynamic riparian aquifers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地下水位波动会影响土壤,地下水和地表水之间养分和污染物的运输。地下水位在短时间内和长时间的潘斯(尤其是河流附近)上下移动。地下水位波动将氧气引入浅地下水,这些氧气可以与有机碳,硝酸盐,铁和锰等生态重要的溶解物质反应,并对砷等污染物产生层叠作用。该项目旨在了解地下水化学如何响应在各个时间尺度上的地下水位波动而发展。现场观测,受控实验室实验和计算机模型将量化反应性溶质的运动,例如氧气,硝酸盐,铁和锰在波动的地下水位下。结果将提高我们对地下水和河水质量的动态变化以及这些重要水资源的管理的理解。该项目还将通过创建动手的户外实验室设施和博物馆展览来向广泛的公民和未来科学家介绍动态的地表水水互动。 地下水位波动在河流附近的反应性溶质传输和水质中起着重要作用。当地下水位升起时,被夹住的土壤空气与周围的孔隙水交换,当地下水位掉落时,孔就会向下行驶。氧气供应的增强刺激了有氧呼吸,硝酸化 - 硝化剂以及地下水中溶解的铁和锰的氧化。水桌波动可以响应河流阶段的变化,将数十至数百米的含量传播到含水层中。然而,对河流附近的反应性运输和水质的影响仍然很少。该项目的总体目标是量化水表波动,氧化还原转换和从含水层到河流的溶质出口之间的关系。该项目利用新颖的传感器技术观察受控柱实验和天然河岸含水层中地下水的影响对地下水化学的影响。这项研究的四个现场地点经历了一系列水桌波动,以响应潮汐,风暴和季节。每个地点都有独特的特性,会影响地下水位附近的反应性传输。但是,成对的地点在气候,岩性,集水量表,土地使用和地貌学上也有共同点。数值流体流量和反应性传输模型将量化这些河岸含水层中生物地球化学转化速率和溶质通量的动力学。观察结果和模型结果将被合成,以产生对动态河岸含水层中地下水位波动对反应性溶质转运的影响的定量理解。该奖项反映了NSF的法定任务,并被认为值得通过基金会的知识分子优点和更广泛的影响来通过评估来获得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Groundwater‐stream connectivity from minutes to months across United States basins as revealed by spectral analysis
光谱分析显示,美国流域地下水流连通性从几分钟到几个月不等
- DOI:10.1002/hyp.14514
- 发表时间:2022
- 期刊:
- 影响因子:3.2
- 作者:Clyne, Jacob B.;Sawyer, Audrey H.
- 通讯作者:Sawyer, Audrey H.
Nitrate Removal Within Heterogeneous Riparian Aquifers Under Tidal Influence
- DOI:10.1029/2019gl085699
- 发表时间:2020-05
- 期刊:
- 影响因子:5.2
- 作者:C. Wallace;A. Sawyer;M. Soltanian;R. Barnes
- 通讯作者:C. Wallace;A. Sawyer;M. Soltanian;R. Barnes
A Model Analysis of the Tidal Engine That Drives Nitrogen Cycling in Coastal Riparian Aquifers
沿海河岸含水层驱动氮循环的潮汐发动机模型分析
- DOI:10.1029/2019wr025662
- 发表时间:2020
- 期刊:
- 影响因子:5.4
- 作者:Wallace, Corey D.;Sawyer, Audrey H.;Barnes, Rebecca T.;Soltanian, Mohamad Reza;Gabor, Rachel S.;Wilkins, Michael J.;Moore, Myles T.
- 通讯作者:Moore, Myles T.
On-Campus Field Experiences Help Students to Learn and Enjoy Water Science During the COVID-19 Pandemic
校园实地体验帮助学生在 COVID-19 大流行期间学习和享受水科学
- DOI:10.3389/fenvs.2022.877327
- 发表时间:2022
- 期刊:
- 影响因子:4.6
- 作者:Saup, C.;Lamantia, K.;Chen, Z.;Bell, B.;Schulze, J.;Alsdorf, D.;Sawyer, A.H.
- 通讯作者:Sawyer, A.H.
Spectral analysis of continuous redox data reveals geochemical dynamics near the stream–aquifer interface
- DOI:10.1002/hyp.13335
- 发表时间:2018-12
- 期刊:
- 影响因子:3.2
- 作者:C. Wallace;A. Sawyer;R. Barnes
- 通讯作者:C. Wallace;A. Sawyer;R. Barnes
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Audrey Sawyer其他文献
Audrey Sawyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Audrey Sawyer', 18)}}的其他基金
Collaborative Research: Emergent Hydrological Properties Associated with Multiple Channel-Spanning Logjams
合作研究:与多航道堵塞相关的新兴水文特性
- 批准号:
1819086 - 财政年份:2018
- 资助金额:
$ 54.76万 - 项目类别:
Continuing Grant
Collaborative Research: Surface water-groundwater connectivity in the tidal freshwater zone and the fate of nitrogen in tidal rivers
合作研究:潮汐淡水区地表水-地下水连通性和潮汐河中氮的归宿
- 批准号:
1446724 - 财政年份:2015
- 资助金额:
$ 54.76万 - 项目类别:
Standard Grant
相似国自然基金
纤维素基水凝胶多重动态可逆交联网络的构筑及自愈合机理研究
- 批准号:22368046
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于水锁效应影响的煤层气储层压降漏斗动态传播机理研究
- 批准号:42302201
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑水资源“量—质”可持续性的跨区域粮食贸易系统建模及动态补偿研究:基于粮食—水—能源—生态视角
- 批准号:52309001
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
核苷酸动态粘性因子增粘生物粘附水凝胶的设计及粘附机理研究
- 批准号:22302014
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于动态共价键的纳米纤维素复合水凝胶及柔性传感性能研究
- 批准号:22378247
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: Introducing Dynamic Sulfur Chemistry into Hydrogels to Promote Water Retention and Healthy Microbe Growth in Soil
职业:将动态硫化学引入水凝胶中,以促进土壤中的保水性和微生物的健康生长
- 批准号:
2337376 - 财政年份:2024
- 资助金额:
$ 54.76万 - 项目类别:
Continuing Grant
GRC: One Health Approaches to Urbanization, Water, and Food Security
GRC:城市化、水和粮食安全的同一个健康方法
- 批准号:
10753642 - 财政年份:2023
- 资助金额:
$ 54.76万 - 项目类别:
Network models to capture multiple outcomes resulting from multi-component, salutogenic interventions
网络模型捕捉多成分有益干预措施产生的多种结果
- 批准号:
10721644 - 财政年份:2023
- 资助金额:
$ 54.76万 - 项目类别:
CAREER: Dynamic Water Transport Timescales: Quantifying Hydrodynamic Responses to Perturbations Across Time and Space in a River Delta
职业:动态水运时间尺度:量化河流三角洲跨时间和空间扰动的水动力响应
- 批准号:
2142881 - 财政年份:2022
- 资助金额:
$ 54.76万 - 项目类别:
Continuing Grant
CAREER: Dynamic adaptation of water resources systems to navigate uncertain hydrologic and human stressors
职业:水资源系统的动态适应,以应对不确定的水文和人类压力源
- 批准号:
2041826 - 财政年份:2021
- 资助金额:
$ 54.76万 - 项目类别:
Continuing Grant