CAREER: Bridging the Gap Between Bottlebrush and Comb Polymers with Precision Macroinitiators to Generate New Elastomeric Materials

职业生涯:利用精密大分子引发剂弥合洗瓶刷和梳状聚合物之间的差距,生成新的弹性材料

基本信息

  • 批准号:
    1750852
  • 负责人:
  • 金额:
    $ 53.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYIn this project the PI and his students will synthesize, characterize, and determine a variety of material properties for a new class of high-performance elastic polymers that may have super-elastic or super-soft properties. Prominent advances in polymer chemistry over the last several decades have ushered in the ability to design a variety of molecular architectures with a high degree of control and functional versatility. The development of new molecular architectures that synergize the features of advanced functionality and enhanced elasticity is the primary objective of this research. The proposed work is hypothesized to produce ultra-flexible materials and super-soft gels that are potentially superior and could have applications as lubricants, articular cartilage (knee or joint) replacements, and protective equipment that reduces force impact. A new class of architectures of polymer molecules having bottlebrush-network shapes will be designed and explored, which is expected to lead to special super-elastic properties. This research will be integrated with broader impacts of education for undergraduates, graduates, and the local community. It will contribute to nurturing the growing research in polymer science at FSU and the nation. A three-point plan focuses on curriculum development, collaborative events, and community outreach directed towards underrepresented groups in polymer science. Education about plastics, their challenges, and their opportunities to solve societal needs for future generations will be undertaken and integrated with the proposed research. TECHNICAL SUMMARY The design of bottlebrush (BB) systems for frontier materials applications places emphasis on the degree of polymerization of the backbone and the side chains in addition to graft density. Although these coarse dials serve as a means to begin understanding of these unique architectures, there are other synthetic components which may present a means potentially to discover new properties. A majority of BB systems are derived from the polymerization of either a vinyl monomer or norbornene to produce a variety of graft chemistries affixed to a highly limited number of backbone options. This work proposes to expand the suite of backbone chemistries possible through the use of precise polypentenamer scaffolds suited to produce BB systems through a "grafting-from" approach. These materials will produce a graft at exactly every fifth carbon (similar to polynorbornenes) but with a flexible rubber-like backbone chemistry between each graft site. It is hypothesized that the reduced Kuhn length associated with this flexible backbone will result in amplified sensitivity as the size of the grafts increase and begin to occupy the pervaded volume around it. Such dynamic behavior will be fully studied through light scattering and viscoelastic measurements as a function of the synthetic design principles that elucidate variances in the aforementioned coarse dials for BB systems. The results will be corroborated with developing theoretical and computational treatments for BB systems. Given the rubber-like backbone, a natural extension for such systems towards superelastic and supersoft networks will be explored to provide potentially transformative materials for use in lubrication and impact dampening. A three-point plan will be implemented to increase the education in polymer science at FSU and the surrounding community through enhanced curriculum, collaborative events, and outreach. Undergraduates will be offered an advanced elective in polymer synthesis. Research focused around polymer science will be highlighted with an FSU annual poster session. Finally, continued efforts to reach out to the surrounding community through a plastics education exhibit will bring to light societal aspects that involve polymer science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要 在这个项目中,PI 和他的学生将合成、表征和确定可能具有超弹性或超柔软特性的新型高性能弹性聚合物的各种材料特性。过去几十年来,聚合物化学取得了显着进步,使得设计具有高度控制性和多功能性的各种分子结构成为可能。本研究的主要目标是开发能够协同先进功能和增强弹性特征的新分子结构。拟议的工作假设生产超柔性材料和超软凝胶,它们具有潜在的优越性,可用作润滑剂、关节软骨(膝盖或关节)替代品以及减少力冲击的防护设备。 将设计和探索一类具有瓶刷网络形状的新型聚合物分子结构,这有望带来特殊的超弹性特性。这项研究将与本科生、研究生和当地社区的教育更广泛的影响相结合。 它将有助于培育佛罗里达州立大学和国家不断发展的聚合物科学研究。 一项三点计划侧重于针对聚合物科学领域代表性不足的群体的课程开发、协作活动和社区外展。 将开展有关塑料、其挑战以及解决子孙后代社会需求的机会的教育,并将其与拟议的研究相结合。技术概要 用于前沿材料应用的洗瓶刷 (BB) 系统的设计除了接枝密度外,还强调主链和侧链的聚合度。尽管这些粗糙的表盘可以作为开始理解这些独特架构的一种手段,但还有其他合成成分可能提供一种潜在的发现新特性的手段。大多数 BB 系统源自乙烯基单体或降冰片烯的聚合,以产生固定在数量极其有限的主链选项上的各种接枝化学物质。这项工作建议通过使用适合通过“嫁接”方法生产 BB 系统的精确聚戊烯支架来扩展可能的主链化学套件。这些材料将恰好每五个碳原子产生一个接枝物(类似于聚降冰片烯),但在每个接枝位点之间具有柔性橡胶状主链化学结构。据推测,随着移植物尺寸的增加并开始占据其周围的体积,与这种柔性主干相关的库恩长度的减少将导致灵敏度增强。这种动态行为将通过光散射和粘弹性测量作为综合设计原理的函数进行充分研究,从而阐明上述 BB 系统粗调表盘的差异。结果将通过开发 BB 系统的理论和计算处理方法得到证实。考虑到类似橡胶的主干,将探索此类系统向超弹性和超软网络的自然延伸,以提供用于润滑和冲击阻尼的潜在变革材料。将实施一项三点计划,通过加强课程、合作活动和外展活动来加强佛罗里达州立大学和周边社区的高分子科学教育。本科生将学习聚合物合成方面的高级选修课。佛罗里达州立大学年度海报会议将重点介绍以聚合物科学为重点的研究。最后,通过塑料教育展览继续努力接触周围社区,将揭示涉及聚合物科学的社会方面。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating the effects of bulky allylic substituents on the regioregularity and thermodynamics of ROMP on cyclopentene
研究大烯丙基取代基对环戊烯 ROMP 的区域规整性和热力学的影响
  • DOI:
    10.1016/j.eurpolymj.2019.109251
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Guillory, Gina A.;Kennemur, Justin G.
  • 通讯作者:
    Kennemur, Justin G.
A new CAMMP-ing ground for polymers
聚合物的新 CAMMP 基础
  • DOI:
    10.1038/s44160-022-00198-y
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leo, Courtney M.;Kennemur, Justin G.
  • 通讯作者:
    Kennemur, Justin G.
Precise Isotactic or Atactic Pendant Alcohols on a Polyethylene Backbone at Every Fifth Carbon: Synthesis, Crystallization, and Thermal Properties
  • DOI:
    10.1021/acs.macromol.2c01090
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    G. Guillory;Stephanie F. Marxsen;R. Alamo;Justin G. Kennemur
  • 通讯作者:
    G. Guillory;Stephanie F. Marxsen;R. Alamo;Justin G. Kennemur
Conformational bias in density functional theory ring strain energy calculations of cyclopentene derivatives: Towards predictive design of chemically recyclable elastomers
环戊烯衍生物密度泛函理论环应变能计算中的构象偏差:面向化学可回收弹性体的预测设计
  • DOI:
    10.1002/pol.20220202
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Coia, Brianna M.;Werner, Sarah E.;Kennemur, Justin G.
  • 通讯作者:
    Kennemur, Justin G.
Polypentenamer Renaissance: Challenges and Opportunities
  • DOI:
    10.1021/acsmacrolett.8b00885
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    7.015
  • 作者:
    Neary, William J.;Kennemur, Justin G.
  • 通讯作者:
    Kennemur, Justin G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Justin Kennemur其他文献

Justin Kennemur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Justin Kennemur', 18)}}的其他基金

Elucidating Ring Opening Metathesis Copolymerization Thermodynamics of Monomers with Dissimilar Ring Strain Energies
阐明不同环应变能单体的开环复分解共聚热力学
  • 批准号:
    2305099
  • 财政年份:
    2023
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Standard Grant

相似国自然基金

超深裂缝性地层温敏黏结强化桥接承压堵漏机理
  • 批准号:
    52374023
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
CGRP神经肽通过N-cadherin趋化筋膜成纤维细胞“桥接式牵引”MFUS促进皮肤再生的机制研究
  • 批准号:
    82372550
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
亚铁还原脱氯过程中羟基的电子桥接作用、机制及调控策略
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于O-GlcNAc糖基化—HIF-1α桥接FAO途径探讨黄葵素“清利和络”改善DKD肾纤维化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多参量光场调制的高速并行激光三维光子桥接技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Bridging the STEM Skills and Employment Gap for the Future of Work
职业:弥合 STEM 技能和就业差距,打造未来工作
  • 批准号:
    2239538
  • 财政年份:
    2023
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Continuing Grant
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
  • 批准号:
    10572539
  • 财政年份:
    2023
  • 资助金额:
    $ 53.4万
  • 项目类别:
More PEAS Please! Bridging the Gap Between Preschool and K-12 Science Learning Environments
请更多豌豆!
  • 批准号:
    10835596
  • 财政年份:
    2023
  • 资助金额:
    $ 53.4万
  • 项目类别:
Bridging the gap of late gestation human nephrogenesis using a non-human primate model
使用非人类灵长类动物模型弥合妊娠晚期人类肾发生的差距
  • 批准号:
    10347725
  • 财政年份:
    2022
  • 资助金额:
    $ 53.4万
  • 项目类别:
CAREER: Bridging the Global Gap on Understanding Downburst Impacts on Buildings: Field Data-Modeling Research and Education for More Resilient Communities
职业:弥合理解下击暴流对建筑物影响的全球差距:为更具复原力的社区进行现场数据建模研究和教育
  • 批准号:
    2146277
  • 财政年份:
    2022
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了