EAGER: SC2: PHY-Layer-Integrated Collaborative Learning in Spectrum Coordination
EAGER:SC2:频谱协调中的 PHY 层集成协作学习
基本信息
- 批准号:1737842
- 负责人:
- 金额:$ 9.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-15 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the explosion of wireless devices, spectrum is becoming a scarce resource that wireless systems fiercely compete for. To ensure that future civilian and military systems, ranging from connected Internet of Things (IoT) devices to battlefield ad-hoc networks, continue to support services with growing quality, systems must evolve beyond the traditional spectrum licensing model and towards an intelligent spectrum sharing paradigm, in which networks nodes collaborate to efficiently share the spectrum. This radical paradigm shift requires the integration of the latest machine learning advances with the more recent progress in software defined radio, in order to endow wireless devices with the intelligence and agility necessary to realize the vision of efficient unsupervised spectrum sharing. The proposed research aims at addressing this fundamental issue, and will offer ample opportunities to provide interdisciplinary training of students at the intersection of machine learning and communications engineering.The project envisions a paradigm shift in radio design, which will intertwine agile communications engineering techniques with advanced machine learning algorithms to fuse the traditional physical-layer and link layers into a "collaboration layer". Specifically, the approach comprises three key elements: (1) a multi-carrier modulation format at the physical layer that provides the required agility to react to interfering signals; (2) a high-performing modulation recognition software that exploits the latest advances in deep learning and convolutional neural networks to accurately classify the radio frequency signals in the environment; and (3) a decision module exploiting the latest advances in regret minimization online algorithms to achieve high exploration versus exploitation performance in the wireless environment.
随着无线设备的爆炸式增长,频谱正成为无线系统激烈争夺的稀缺资源。为了确保未来的民用和军用系统(从联网的物联网 (IoT) 设备到战场自组织网络)继续支持质量不断提高的服务,系统必须超越传统的频谱许可模式,转向智能频谱共享范例,其中网络节点协作以有效地共享频谱。这种根本性的范式转变需要将最新的机器学习进展与软件定义无线电的最新进展相结合,以便赋予无线设备实现高效无监督频谱共享愿景所需的智能和敏捷性。拟议的研究旨在解决这一基本问题,并将提供充足的机会,为学生提供机器学习和通信工程交叉领域的跨学科培训。该项目设想了无线电设计的范式转变,它将敏捷的通信工程技术与先进的技术结合在一起。机器学习算法将传统的物理层和链路层融合为“协作层”。具体来说,该方法包括三个关键要素:(1)物理层的多载波调制格式,提供对干扰信号做出反应所需的灵活性; (2) 高性能调制识别软件,利用深度学习和卷积神经网络的最新进展,对环境中的射频信号进行准确分类; (3) 决策模块利用遗憾最小化在线算法的最新进展,在无线环境中实现较高的探索与利用性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastian Pokutta其他文献
Sebastian Pokutta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastian Pokutta', 18)}}的其他基金
CAREER: Semidefinite Programming (SDP) Extended Formulations
职业:半定规划 (SDP) 扩展公式
- 批准号:
1452463 - 财政年份:2015
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
Collaborative Research: Almost Symmetric Integer Programs
合作研究:几乎对称整数规划
- 批准号:
1333789 - 财政年份:2013
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
相似国自然基金
X射线辐照下负热膨胀闪烁体Sc2(W/Mo)3O12的宽温域发光调制及成像技术
- 批准号:12364053
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
多粘类芽孢杆菌SC2杀镰孢菌素GHPD基团合成途径解析
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
Sc2(MO4)3 (M= Cr,Mo,W)纳米材料的负热膨胀与光电性质研究
- 批准号:21871137
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
DegU和Spo0A影响根际促生菌Paenibacillus polymyxa SC2的抗菌物质和生物膜形成的机理研究
- 批准号:31770115
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Diversity supplement for the SC2 parent grant
SC2 家长补助金的多元化补充
- 批准号:
10573805 - 财政年份:2021
- 资助金额:
$ 9.99万 - 项目类别:
EAGER: SC2: Load Prediction and Collision Coordination for Collaboration Channel
EAGER:SC2:协作通道的负载预测和碰撞协调
- 批准号:
1737732 - 财政年份:2017
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
EAGER: SC2: Efficient, Collaborative Spectrum Sharing through a Systems and Optimal Control Approach
EAGER:SC2:通过系统和最优控制方法实现高效、协作的频谱共享
- 批准号:
1737989 - 财政年份:2017
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
EAGER: SC2: A Systems Approach to Spectrum Collaboration
EAGER:SC2:频谱协作的系统方法
- 批准号:
1738114 - 财政年份:2017
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
EAGER: SC2: SpeCOlab Spectrum Collaboration
EAGER:SC2:SpeCOlab 频谱协作
- 批准号:
1738097 - 财政年份:2017
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant