CAREER: Uncovering the strange biology of elusive Shigella phages and their roles in horizontal gene transfer

职业:揭示难以捉摸的志贺氏菌噬菌体的奇怪生物学及其在水平基因转移中的作用

基本信息

  • 批准号:
    1750125
  • 负责人:
  • 金额:
    $ 79.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-15 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Microbes rarely exist in isolation. Instead, they interact with multiple other partners in the broader context of a microbiome. Microbiomes play a large role in the health of the organisms with which they interact. Microbiomes are complex networks of organisms that frequently include bacteriophages, which are viruses that infect bacteria. Since bacteriophages, or phages, play essential roles in shaping bacterial evolution, it is imperative to understand the impact of these viruses within the context of complex microbial communities. The goal of this project is to fully characterize the mechanism(s) of phage-mediated evolution within complex microbial networks and ultimately examining these networks in an environment that mimics the human gut. The Broader Impact activities involve a phage hunting project that will involve middle school, high school and undergraduates in the discovery of new phages (this will involve a collaboration between MSU and Grinnell College). Blog posts, along with YouTube videos, will keep the community informed regarding progress in the identification of newly discovered phages. Teacher training, along with curriculum development in the K-12 classroom, are prominent components of the proposed workplan. Some phages can "transduce", or package host genetic information, and pass it along to the next host during infection. This profoundly affects microbiome evolution by mobilizing and moving genes horizontally within the community. A recent discovery has uncovered novel evolution within Shigella phages that potentially increases genetic exchange within bacterial populations. To truly understand mechanisms of phage-mediated evolution, it is imperative to consider transduction within complex communities. This can be done by building on traditional studies of experimental microbial evolution, which solely use purified cultures and non-transducing phages, to multi-species communities that include transducing phages. The objective of this research is to determine mechanisms by which phage-mediated genetic transfer affects microbiome evolution. The first step in building these communities will be to isolate and characterize diverse Shigella phages. The PI will isolate Shigella phages from diverse environments, characterize their life cycles on different hosts, and perform experimental co-evolution studies between phages and hosts. These co-evolution experiments will initially be used to determine how phages evolve to infect new hosts. Combined, these results will help parameterize computational models, which will be used to build experimental networks with increasing complexity. The PI will determine selection pressures that influence rapid evolution to develop a predictive tool that can ultimately be applied to other bacteria:phage interactions. The PI will then experimentally test computationally predicted hypotheses using conditions that resulted in interesting and novel outcomes. Ultimately cell culture microfluidics (i.e. "Gut-on-a-Chip") will be developed to mimic a native microbiome and be used to study phage:host interactions in the context of a mammalian gut. The PI will track evolution and genetic mobility between phages and host bacteria using genetic sequencing of isolates after a population has evolved in this native, but easily-controlled, environment.
微生物很少存在。取而代之的是,他们在微生物组的更广泛背景下与其他多个合作伙伴互动。微生物组在与其相互作用的生物的健康中起着重要作用。微生物组是经常包括噬菌体的生物体的复杂网络,这些网络是感染细菌的病毒。由于噬菌体或噬菌体在塑造细菌进化中起着至关重要的作用,因此必须了解这些病毒在复杂的微生物群落中的影响。该项目的目的是充分表征复杂微生物网络中噬菌体介导的进化的机制,并最终在模仿人类肠道的环境中检查这些网络。更广泛的影响活动涉及一个噬菌体狩猎项目,该项目将涉及中学,高中和大学生发现新噬菌体(这将涉及MSU和Grinnell College之间的合作)。 博客文章以及YouTube视频将使社区了解新发现的噬菌体的进度。 教师培训以及K-12教室中的课程开发是拟议工作计划的重要组成部分。有些噬菌体可以“转导”或包装宿主遗传信息,并在感染过程中将其传递给下一个宿主。这深刻影响了微生物组在社区内部动员和移动基因的进化。最近的发现发现了志贺氏菌噬菌体内的新进化,这可能会增加细菌种群中的遗传交换。为了真正了解噬菌体介导的进化的机制,必须考虑复杂社区内的转导。这可以通过基于实验性微生物进化的传统研究来完成,这些研究仅将纯化的培养物和非透明噬菌体使用到包括转导噬菌体在内的多物种群落中。这项研究的目的是确定噬菌体介导的遗传转移影响微生物组进化的机制。建立这些社区的第一步是隔离和表征各种志贺氏噬菌的噬菌体。 PI将从不同的环境中分离志贺氏菌噬菌体,表征其在不同宿主上的生命周期,并在噬菌体和宿主之间进行实验共同进化研究。这些共同进化实验最初将用于确定噬菌体如何进化以感染新宿主。这些结果结合在一起,将有助于参数化计算模型,该计算模型将用于构建具有增加复杂性的实验网络。 PI将确定影响快速进化的选择压力,以开发最终应用于其他细菌的预测工具:噬菌体相互作用。然后,PI将使用导致有趣且新颖的结果的条件在实验上测试计算预测的假设。最终将开发细胞培养的微流体(即“肠道芯片”)来模仿天然微生物组,并用于研究噬菌体:在哺乳动物肠道的背景下进行噬菌体相互作用。 PI将使用分离株的遗传测序来跟踪噬菌体和宿主细菌之间的进化和遗传迁移率,该分离株在人群中进化为这种天然,但易于控制的环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristin Parent其他文献

Enter the goliaths: infection by giant viruses
  • DOI:
    10.1016/j.bpj.2021.11.573
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Kristin Parent;Jason R. Schrad;Anastasiya A. Lavell;Juliana R. Cortines;Jonatas Abrahao
  • 通讯作者:
    Jonatas Abrahao

Kristin Parent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristin Parent', 18)}}的其他基金

Collaborative Research: Creating Assessments for Student Understanding of Core Chemistry Ideas in Introductory Biology
协作研究:为学生对生物学入门中的核心化学思想的理解进行评估
  • 批准号:
    1708664
  • 财政年份:
    2017
  • 资助金额:
    $ 79.43万
  • 项目类别:
    Standard Grant

相似国自然基金

基于基因组挖掘的新颖二倍半萜定向发现及逆转肿瘤多药耐药活性及作用机制研究
  • 批准号:
    82373755
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
三七中齐墩果烷型皂苷合成途径的发现与解析
  • 批准号:
    82360742
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
多重导向云木香叶中新颖抗HBV倍半萜及其聚合体的发现和作用机制研究
  • 批准号:
    82304341
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
川芎“一体多用”:基于活性标签化特征分子网络的川芎茎叶“主风眩”新药源发现
  • 批准号:
    82373837
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
两种青牛胆属植物中调控PD-1表达的克罗烷二萜的发现及肿瘤免疫调控功能研究
  • 批准号:
    82304336
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 79.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 79.43万
  • 项目类别:
    Standard Grant
REGULATING THE FLOW: Uncovering How Roots Sense and Respond to Water Availability
调节流量:揭示根部如何感知和响应水的可用性
  • 批准号:
    BB/Z514482/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79.43万
  • 项目类别:
    Fellowship
Uncovering the evolutionary history and significance of Fibonacci spirals in vascular plants
揭示维管植物中斐波那契螺旋的进化历史和意义
  • 批准号:
    EP/Y037138/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79.43万
  • 项目类别:
    Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 79.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了