AitF: Mechanism Design and Machine Learning for Peer Grading

AitF:同行评分的机制设计和机器学习

基本信息

  • 批准号:
    1733860
  • 负责人:
  • 金额:
    $ 70万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This project explores the design and analysis of peer grading technology. A peer grading system is an online tool that collects student submissions, assigns review tasks to the students and graders, and aggregates reviews to produce assessments of both the submissions and the peer reviews. The PIs have developed a prototype system and have collected preliminary evidence that suggests that peer review has important potential benefits:1. Learning by reviewing: Students learn from critical assessment of other students' work. In the PIs' prototype at Northwestern, 60% of the students reported that peer review helped them learn course material and 55% of the students reported that peer review helped them to prepare better homework solutions themselves.2. Reduced grading staff: Peer grading reduces the grading load on course staff and allows for effective teaching with larger classes. This is especially important currently, as interest in computer science classes increases at a faster pace than teaching resources. In the PIs' prototype at Northwestern, the course staff graded 1/5 of the student submissions.3. Promptness of feedback: Reduced teacher grading enables prompt feedback to students. In the PIs' prototype at Northwestern, peer reviews were available within three days and final assessment of both the submission and peer reviews were available within five days. Prior to introducing peer review, assessments took one to two weeks.A peer grading system is comprised of three main components:1. The review matching algorithm determines which peers should review which submissions and which submissions should be reviewed by the teacher.2. The submission grading algorithm aggregates the reviews of the peers and the submissions and assigns grades to the submissions.3. The review grading algorithm compares the peer reviews with the teacher reviews and assigns grades to the peer reviews. Without this algorithm, peers may not put effort into providing quality reviews, and the reviews will be neither accurate for grading nor beneficial for the peer.The details of these algorithms are crucial for the proper working of the peer review system. A main research effort of this project is to identify the algorithms to use for each of these components. The review matching algorithm affects the accuracy of the subsequent grading algorithms and the grading load of the teacher. The submission grading algorithm determines which peer reviews are accurate and which are inaccurate and uses this understanding to assign grades to the submissions that are representative of the submission quality. The review grading algorithm incentivizes the peers to put in sufficient effort to determine whether a submission is good or bad and it is calibrated so that good reviews and bad reviews get the appropriate review grades. The PIs have implemented prototypes of these algorithms as part of a peer grading system that has been prototyped in Northwestern computer science classes. However, the space of possible algorithms is large and the PIs' work on the prototype has yet to determine the algorithms that combine to give the best education outcomes. A main focus of this project will be improving the understanding of which algorithms lead to the best education outcomes.Theoretical work in algorithms and machine learning provides a starting point for the project's study of good algorithms for peer grading systems. A key endeavor of the project is translating and applying these theoretical algorithms to the peer grading domain. As one example, proper scoring rules are a natural approach for grading the peer reviews. However, test runs of the PIs' prototype implementation suggest that these rules might not be so good in practice. Both new models and algorithms are needed in theory, and these new algorithms need to work in practice.
该项目探索同行评分技术的设计和分析。 同行评分系统是一种在线工具,它收集学生提交的内容,向学生和评分者分配审阅任务,并汇总评论以对提交的内容和同行评审进行评估。 PI 开发了一个原型系统,并收集了初步证据,表明同行评审具有重要的潜在好处:1. 通过复习来学习:学生通过对其他学生作业的批判性评估来学习。 在西北大学的 PI 原型中,60% 的学生表示同行评审帮助他们学习课程材料,55% 的学生表示同行评审帮助他们自己准备更好的作业解决方案。2. 减少评分人员:同伴评分减少了课程人员的评分负担,并允许在更大的班级中进行有效的教学。 目前这一点尤其重要,因为人们对计算机科学课程的兴趣增长速度快于教学资源。 在西北大学的 PI 原型中,课程工作人员对学生提交的 1/5 进行评分。3. 反馈的及时性:教师评分的降低可以使学生得到及时的反馈。 在西北大学的 PI 原型中,同行评审可在三天内完成,提交内容和同行评审的最终评估可在五天内完成。 在引入同行评审之前,评估需要一到两周的时间。同行评分系统由三个主要组成部分组成:1。 评审匹配算法决定哪些同学应该评审哪些提交内容以及哪些提交内容应该由老师评审。2. 提交评分算法汇总了同行的评论和提交的内容,并对提交的内容进行评分。 3. 评审评分算法将同行评审与教师评审进行比较,并对同行评审进行评分。 如果没有这种算法,同行可能不会努力提供高质量的评论,并且评论对于评分既不准确,也不对同行有利。这些算法的细节对于同行评审系统的正常工作至关重要。 该项目的主要研究工作是确定用于每个组件的算法。 复习匹配算法影响后续评分算法的准确性和老师的评分负担。 提交评分算法确定哪些同行评审是准确的,哪些是不准确的,并使用这种理解来为代表提交质量的提交评分。 评论评分算法激励同行付出足够的努力来确定提交的内容是好还是坏,并且对其进行校准,以便好的评论和差的评论获得适当的评论等级。 PI 已经实现了这些算法的原型,作为同行评分系统的一部分,该系统已在西北大学计算机科学课程中原型化。 然而,可能的算法空间很大,PI 的原型工作尚未确定能够结合起来提供最佳教育成果的算法。 该项目的主要重点将是提高对哪些算法可以带来最佳教育成果的理解。算法和机器学习方面的理论工作为该项目研究同行评分系统的良好算法提供了起点。 该项目的一个关键工作是将这些理论算法转化并应用到同行评分领域。 举个例子,适当的评分规则是对同行评审进行评分的一种自然方法。 然而,PI 原型实施的测试运行表明这些规则在实践中可能不太好。 理论上需要新的模型和算法,而这些新的算法需要在实践中发挥作用。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimization of Scoring Rules
评分规则优化
Practical Methods for Semi-automated Peer Grading in a Classroom Setting
课堂环境中半自动同伴评分的实用方法
  • DOI:
    10.1145/3340631.3394878
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan, Zheng;Downey, Doug
  • 通讯作者:
    Downey, Doug
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Hartline其他文献

Decision Theoretic Foundations for Experiments Evaluating Human Decisions
评估人类决策的实验的决策理论基础
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Hullman;Alex Kale;Jason Hartline
  • 通讯作者:
    Jason Hartline
SIGecom Job Market Candidate Pro(cid:28)les 2020
SIGecom 就业市场候选人 Pro(cid:28)les 2020
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vasilis Gkatzelis;Jason Hartline;Rupert Freeman;Aleck C. Johnsen;Bo Li;Amin Rahimian;Ariel Schvartzman Cohenca;Ali Shameli;Yixin Tao;David Wajc;Adam Wierman;Babak Hassibi
  • 通讯作者:
    Babak Hassibi
Fair Grading Algorithms for Randomized Exams
随机考试的公平评分算法
ElicitationGPT: Text Elicitation Mechanisms via Language Models
EliminationGPT:通过语言模型的文本引出机制
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yifan Wu;Jason Hartline
  • 通讯作者:
    Jason Hartline

Jason Hartline的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Hartline', 18)}}的其他基金

AF: Small: Mechanism Design for the Classroom
AF:小:课堂的机制设计
  • 批准号:
    2229162
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
AF: Small: Mechanism Design for the Classroom
AF:小:课堂的机制设计
  • 批准号:
    2229162
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934931
  • 财政年份:
    2019
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
AF: Small: Non-revelation Mechanism Design
AF:小:非暴露机构设计
  • 批准号:
    1618502
  • 财政年份:
    2016
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
ICES: Small: Collaborative Research:Understanding the Roles of Intermediaries in Matching Markets
ICES:小型:协作研究:了解中介机构在匹配市场中的作用
  • 批准号:
    1216095
  • 财政年份:
    2012
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
ICES: Large: Collaborative Research: Towards Realistic Mechanisms: statistics, inference, and approximation in simple Bayes-Nash implementation
ICES:大型:协作研究:走向现实机制:简单贝叶斯-纳什实现中的统计、推理和近似
  • 批准号:
    1101717
  • 财政年份:
    2011
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
CAREER: Networked Game Theory and Mechanism Design
职业:网络博弈论和机制设计
  • 批准号:
    1055020
  • 财政年份:
    2011
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
CAREER: Mechanism Design
职业:机构设计
  • 批准号:
    0846113
  • 财政年份:
    2009
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanism Design and Approximation
合作研究:机制设计与近似
  • 批准号:
    0830773
  • 财政年份:
    2008
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant

相似国自然基金

基于碳配额质押与碳回购的供应链融资模式选择与协调机制设计
  • 批准号:
    72302142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于普鲁士蓝正极材料设计构筑高能量密度无负极混合离子锌电池及相关储能机制研究
  • 批准号:
    22309209
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低温锂离子电池电极材料晶粒间界设计及离子传输机制研究
  • 批准号:
    52302336
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“两耗一抑”策略的结肠癌原位生成砒霜自组装体的设计与评价及机制研究
  • 批准号:
    82374048
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于抗原特异性识别原理的巨细胞病毒特异性T细胞转换器设计及抗肿瘤机制研究
  • 批准号:
    82304361
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Designing Rational Combinations to Improve CAR T Cell Therapy for Prostate Cancer
设计合理的组合以改善前列腺癌的 CAR T 细胞疗法
  • 批准号:
    10752046
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
CAREER: Optimizing Healthcare Operations through Incentive Mechanism Design
职业生涯:通过激励机制设计优化医疗运营
  • 批准号:
    2339767
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
NSF-BSF: Mechanism Design for All
NSF-BSF:所有人的机制设计
  • 批准号:
    2343922
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
  • 批准号:
    10752274
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
Translational genomics in gout: From GWAS signal to mechanism
痛风的转化基因组学:从 GWAS 信号到机制
  • 批准号:
    10735151
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了