AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
基本信息
- 批准号:1733834
- 负责人:
- 金额:$ 44.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep neural networks (DNNs) have emerged as a class of powerful techniques for learning solutions in a number of challenging problem domains, including computer vision, natural language processing and bioinformatics. These solutions have been enabled mainly because we now have computational accelerators able to sift through the myriad of data required to train a neural network. As the size of DNN models continues to grow, computational and memory resource requirements for training will also grow, limiting deployment of deep learning in many practical applications. Leveraging the theory of structured matrices, this project will develop a general framework for efficient DNN training and inference, providing a significant reduction in algorithmic complexity measures in terms of both computation and storage. The project, if successful, should fundamentally impact a broad class of deep learning applications. It will explore accelerating this new structure for deep learning algorithms targeting emerging accelerator architectures, and will evaluate the benefits of these advances across a number of application domains, including big data analytics, cognitive systems, unmanned vehicles and aerial systems, and wearable devices. The interdisciplinary nature of this project bridges the areas of matrix theory, machine learning, and computer architecture, and will affect education at both Northeastern and CCNY, including the involvement of underrepresented and undergraduate students in the rich array of research tasks. The project will: (1) for the first time, develop a general theoretical framework for structured matrix-based DNN models and perform detailed analysis and investigation of error bounds, convergence, fast training algorithms, etc.; (2) develop low-space-cost and high-speed inference and training schemes for the fully connected layers of DNNs; (3) impose a weight tensor with structure and enable low computational and space cost convolutional layers; (4) develop high-performance and energy-efficient implementations of deep learning systems on high-performance parallel platforms, low-power embedded platforms, as well as emerging computing paradigms and devices; (5) perform a comprehensive evaluation of the proposed approaches on different performance metrics in a variety of platforms. The project will deliver tuned implementations targeting a range of computational platforms, including ASICs, FPGAs, GPUs and cloud servers. The hardware optimizations will focus on producing high-speed and low-cost implementations of deep learning systems.
深度神经网络 (DNN) 已成为一类强大的技术,用于在许多具有挑战性的问题领域中学习解决方案,包括计算机视觉、自然语言处理和生物信息学。这些解决方案之所以能够实现,主要是因为我们现在拥有能够筛选的计算加速器。随着训练神经网络所需的大量数据不断增长,训练的计算和内存资源需求也会增加,从而限制了深度学习在许多实际应用中的部署。这该项目将开发一个 DNN 训练和推理的通用框架,在计算和存储方面显着降低算法复杂性。该项目如果成功,将从根本上影响广泛的深度高效学习应用。这种针对新兴加速器架构的深度学习算法的新结构,并将评估这些进步在许多应用领域的好处,包括大数据分析、认知系统、无人驾驶车辆和航空系统以及可穿戴设备的跨学科性质。项目架起了各地区的桥梁该项目将:(1)首次。 ,开发基于结构化矩阵的DNN模型的通用理论框架,并对误差范围、收敛性、快速训练算法等进行详细的分析和研究(2)开发低空间成本和高速的推理和训练方案;全连接层DNN;(3) 施加具有结构的权重张量,并启用低计算和空间成本的卷积层;(4) 在高性能并行平台、低功耗嵌入式平台上开发深度学习系统的高性能和节能实现;以及新兴的计算范例和设备;(5) 对各种平台中的不同性能指标进行综合评估 该项目将针对一系列计算平台(包括 ASIC、FPGA、 GPU 和云服务器的硬件优化将侧重于深度学习系统的高速和低成本实现。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
C ir CNN: accelerating and compressing deep neural networks using block-circulant weight matrices
C ir CNN:使用块循环权重矩阵加速和压缩深度神经网络
- DOI:10.1145/3123939.3124552
- 发表时间:2017-01
- 期刊:
- 影响因子:0
- 作者:Ding, Caiwen;Yuan, Geng;Ma, Xiaolong;Zhang, Yipeng;Tang, Jian;Qiu, Qinru;Lin, Xue;Yuan, Bo;Liao, Siyu;Wang, Yanzhi;et al
- 通讯作者:et al
C-LSTM: Enabling Efficient LSTM using Structured Compression Techniques on FPGAs
C-LSTM:在 FPGA 上使用结构化压缩技术实现高效 LSTM
- DOI:10.1145/3174243.3174253
- 发表时间:2018-02-15
- 期刊:
- 影响因子:0
- 作者:Shuo Wang;Zhe Li;Caiwen Ding;Bo Yuan;Qinru Qiu;Yanzhi Wang;Yun Liang
- 通讯作者:Yun Liang
Implementation of a Near-Optimal Complex Root Clustering Algorithm
近最优复根聚类算法的实现
- DOI:10.1007/978-3-319-96418-8_28
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:Imbach, Rémi;Pan, Victor;Yap, Chee
- 通讯作者:Yap, Chee
Towards Ultra-High Performance and Energy Efficiency of Deep Learning Systems: An Algorithm-Hardware Co-Optimization Framework
迈向深度学习系统的超高性能和高能效:算法-硬件协同优化框架
- DOI:10.1609/aaai.v32i1.11653
- 发表时间:2018-02-18
- 期刊:
- 影响因子:0
- 作者:Yanzhi Wang;Caiwen Ding;Zhe Li;Geng Yuan;Siyu Liao;Xiaolong Ma;Bo Yuan;Xuehai Qian;Jian Tang;Qinru Qiu;X. Lin
- 通讯作者:X. Lin
Energy-efficient, high-performance, highly-compressed deep neural network design using block-circulant matrices
使用块循环矩阵的节能、高性能、高压缩深度神经网络设计
- DOI:10.1109/iccad.2017.8203813
- 发表时间:2017-11-01
- 期刊:
- 影响因子:0
- 作者:Siyu Liao;Zhe Li;X. Lin;Qinru Qiu;Yanzhi Wang;Bo Yuan
- 通讯作者:Bo Yuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Yuan其他文献
Recommending People to Follow Using Asymmetric Factor Models with Social Graphs
使用带有社交图的不对称因素模型推荐人们关注
- DOI:
10.1007/978-3-319-00930-8_24 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Tianle Ma;Yujiu Yang;Liangwei Wang;Bo Yuan - 通讯作者:
Bo Yuan
Psychological Distress and Its Correlates Among COVID-19 Survivors During Early Convalescence Across Age Groups
不同年龄段的 COVID-19 幸存者在康复早期的心理困扰及其相关性
- DOI:
10.1016/j.jagp.2020.07.003 - 发表时间:
2020-07-10 - 期刊:
- 影响因子:0
- 作者:
Xin Cai;Xiaopeng Hu;Ivo Otte Ekumi;Jianchun Wang;Yawen An;Zhiwen Li;Bo Yuan - 通讯作者:
Bo Yuan
Associations Between a History of Depression and Cognitive Performance Among Older Adults in Shandong, China
中国山东老年人抑郁史与认知表现之间的关联
- DOI:
10.1007/s10597-019-00461-1 - 发表时间:
2019-09-18 - 期刊:
- 影响因子:2.7
- 作者:
Bo Yuan;V. Yiengprugsawan - 通讯作者:
V. Yiengprugsawan
NMF hyperspectral unmixing algorithm combined with spatial and spectral correlation analysis
结合空间和光谱相关分析的 NMF 高光谱解混算法
- DOI:
10.11834/jrs.20186445 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Bo Yuan - 通讯作者:
Bo Yuan
A Normalized Difference Spectral Recognition Index for Azurite Pigment
蓝铜矿颜料的归一化差异光谱识别指数
- DOI:
10.1177/0003702820909435 - 发表时间:
2020-02-19 - 期刊:
- 影响因子:3.5
- 作者:
Taixia Wu;Bo Yuan;Shudong Wang;Guanghua Li;Y. Lei - 通讯作者:
Y. Lei
Bo Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Yuan', 18)}}的其他基金
CAREER: SHF: Chimp: Algorithm-Hardware-Automation Co-Design Exploration of Real-Time Energy-Efficient Motion Planning
职业:SHF:黑猩猩:实时节能运动规划的算法-硬件-自动化协同设计探索
- 批准号:
2239945 - 财政年份:2023
- 资助金额:
$ 44.81万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
- 批准号:
1955909 - 财政年份:2020
- 资助金额:
$ 44.81万 - 项目类别:
Continuing Grant
Renewal: Preparing Crosscutting Cybersecurity Scholars
更新:培养跨领域网络安全学者
- 批准号:
1922169 - 财政年份:2019
- 资助金额:
$ 44.81万 - 项目类别:
Continuing Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
- 批准号:
1854742 - 财政年份:2018
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: LDPD-Net: A Framework for Accelerated Architectures for Low-Density Permuted-Diagonal Deep Neural Networks
SHF:小型:协作研究:LDPD-Net:低密度置换对角深度神经网络加速架构框架
- 批准号:
1854737 - 财政年份:2018
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: LDPD-Net: A Framework for Accelerated Architectures for Low-Density Permuted-Diagonal Deep Neural Networks
SHF:小型:协作研究:LDPD-Net:低密度置换对角深度神经网络加速架构框架
- 批准号:
1815699 - 财政年份:2018
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
SFS: Preparing Crosscutting Cybersecurity Scholars
SFS:培养跨领域网络安全学者
- 批准号:
1433736 - 财政年份:2015
- 资助金额:
$ 44.81万 - 项目类别:
Continuing Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
- 批准号:
2051197 - 财政年份:2020
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1940759 - 财政年份:2019
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
2006206 - 财政年份:2019
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
- 批准号:
1733812 - 财政年份:2018
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
- 批准号:
1854742 - 财政年份:2018
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant