AitF: Algorithms and Mechanisms for Kidney Exchange
AitF:肾脏交换的算法和机制
基本信息
- 批准号:1733556
- 负责人:
- 金额:$ 79.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Severe cases of renal failure require kidney transplantation. But the demand for kidneys is huge while the supply is quite limited. Even when a willing donor is found, several hurdles must be cleared before transplantation can take place. Enter kidney exchange, the idea that patients can exchange willing but incompatible donors. In its most basic form ? 2-way exchanges ? two patient-donor pairs swap kidneys, that is, the first donor donates to the second patient and the second donor to the first patient. However, exchanges along longer cycles and even chains are also taking place. In recent years several kidney exchange programs have become operational, building on the work of economists and computer scientists. And while significant progress has already been made, computer science has an even bigger role to play in kidney exchange research. Indeed, the theme of this proposal is that challenges in kidney exchange give rise to a wealth of exciting theoretical questions. Moreover, solving these problems matters: These problems are important to the design and optimization of real-world kidney exchange programs.An overarching goal of this proposal is to narrow the gap between the theory and practice of kidney exchange. The proposed research will incorporate elements such as 3-way exchanges, weighted edges, and chains initiated by altruistic donors into existing work and develop new models that ? while still abstractions of reality ? are able to distill the essence of practical kidney exchange challenges. The project can therefore impact the evolution of kidney exchange programs, which are still in their infancy. In more detail, the project focuses on two main research directions: 1. Dealing with incentives: Transplant centers care foremost about their own patients. Thus if the individual transplant centers cannot each be confident that their own patients will fare at least as well if they participate in the exchange than if they do not, then they may not join. Even more subtly, the transplant centers may join but "hide" their easier-to-match patients. The proposed research aims to tackle both of these challenges. The goal is to develop algorithms and analysis for exchanges that produce optimal or near-optimal solutions, while providing strong incentive guarantees for transplant centers to join.2. Dealing with crossmatches: Crossmatch tests require mixing samples of the blood of potential donors and patients, and hence are only done after a matching is computed. Unfortunately, crossmatch tests are quite likely to fail, leading to the collapse of large portions of supposedly optimal exchanges. Optimization that takes crossmatches into account offers significant gains compared to the common practice today. The proposal contains plans to more broadly develop a full theoretical and algorithmic understanding of the integration of crossmatch tests into the optimization, and the fundamental tradeoffs involved.
严重的肾功能衰竭需要进行肾移植。但肾脏的需求量巨大,而供应量却相当有限。即使找到愿意的捐赠者,在进行移植之前也必须清除一些障碍。肾脏交换是指患者可以交换愿意但不相容的捐赠者。最基本的形式? 2 路交换 ?两对患者-捐赠者交换肾脏,即第一个捐赠者捐赠给第二个患者,第二个捐赠者捐赠给第一个患者。但更长周期甚至链条的交换也在发生。近年来,在经济学家和计算机科学家的工作基础上,一些肾脏交换项目已经开始运作。尽管已经取得了重大进展,但计算机科学在肾脏交换研究中可以发挥更大的作用。事实上,该提案的主题是肾脏交换的挑战引发了大量令人兴奋的理论问题。此外,解决这些问题也很重要:这些问题对于现实世界的肾脏交换项目的设计和优化非常重要。该提案的首要目标是缩小肾脏交换理论与实践之间的差距。拟议的研究将把由利他捐助者发起的三向交换、加权边缘和链等元素纳入现有工作中,并开发新模型?同时仍然是现实的抽象?能够提炼出实际肾脏交换挑战的精髓。因此,该项目可以影响仍处于起步阶段的肾脏交换计划的发展。更详细地说,该项目侧重于两个主要研究方向: 1. 处理激励措施:移植中心最关心的是自己的患者。因此,如果各个移植中心不能确信自己的患者参加交换至少会比不参加交换的情况好,那么他们就可能不会加入。更巧妙的是,移植中心可能会加入但“隐藏”更容易匹配的患者。拟议的研究旨在解决这两个挑战。目标是为交易所开发算法和分析,产生最优或接近最优的解决方案,同时为移植中心的加入提供强有力的激励保证。2.处理交叉配血:交叉配血测试需要混合潜在捐献者和患者的血液样本,因此只有在计算匹配后才能进行。不幸的是,交叉匹配测试很可能会失败,导致大部分所谓的最佳交换崩溃。与当今的常见做法相比,考虑交叉匹配的优化可带来显着的收益。该提案包含更广泛地发展对交叉匹配测试与优化的集成以及所涉及的基本权衡的完整理论和算法理解的计划。
项目成果
期刊论文数量(171)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bandit Linear Optimization for Sequential Decision Making and Extensive-Form Games
顺序决策和扩展博弈的强盗线性优化
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Farina, G.;Schmucker, R.;Sandholm, T.
- 通讯作者:Sandholm, T.
Bayesian Multiagent Inverse Reinforcement Learning for Policy Recommendation
用于政策建议的贝叶斯多智能体逆强化学习
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Martin, C.;Sandholm, T.
- 通讯作者:Sandholm, T.
Dynamic Placement in Refugee Resettlement
难民安置中的动态安置
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Ahani, Narges;Gölz, Paul;Procaccia, Ariel D.;Teytelboym, Ale;Trapp, Andrew
- 通讯作者:Trapp, Andrew
Inverse Reinforcement Learning From Like-Minded Teachers
向志趣相投的老师学习逆向强化学习
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Noothigattu, Ritesh;Yan, Tom;Procaccia, Ariel D.
- 通讯作者:Procaccia, Ariel D.
Faster Algorithms for Optimal Ex-Ante Coordinated Collusive Strategies in Extensive-Form Zero-Sum Games
扩展型零和博弈中最优事前协调共谋策略的更快算法
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Farina, G.;Celli, A.;Gatti, N.;Sandholm, T.
- 通讯作者:Sandholm, T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ariel Procaccia其他文献
In defense of liquid democracy
捍卫流动民主
- DOI:
- 发表时间:
2023-07 - 期刊:
- 影响因子:0
- 作者:
Daniel Halpern;Joseph Y. Halpern, Ali Jadbabaie;Elchanan Mossel;Ariel Procaccia;Manon Revel - 通讯作者:
Manon Revel
Ariel Procaccia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ariel Procaccia', 18)}}的其他基金
AF: Small: A Computational Lens on Participatory Democracy
AF:小:参与式民主的计算镜头
- 批准号:
2007080 - 财政年份:2020
- 资助金额:
$ 79.96万 - 项目类别:
Standard Grant
RI: Small: Computational Social Choice: For the People
RI:小:计算社会选择:为了人民
- 批准号:
2024287 - 财政年份:2020
- 资助金额:
$ 79.96万 - 项目类别:
Standard Grant
RI: Small: Computational Social Choice: For the People
RI:小:计算社会选择:为了人民
- 批准号:
1714140 - 财政年份:2017
- 资助金额:
$ 79.96万 - 项目类别:
Standard Grant
CAREER: A Broad Synthesis of Artificial Intelligence and Social Choice
职业:人工智能和社会选择的广泛综合
- 批准号:
1350598 - 财政年份:2014
- 资助金额:
$ 79.96万 - 项目类别:
Continuing Grant
ICES: Small: Computational Fair Division: From Cake Cutting to Cloud Computing
ICES:小型:计算公平分部:从切蛋糕到云计算
- 批准号:
1215883 - 财政年份:2012
- 资助金额:
$ 79.96万 - 项目类别:
Standard Grant
Summer School on Algorithmic Economics
算法经济学暑期学校
- 批准号:
1212499 - 财政年份:2012
- 资助金额:
$ 79.96万 - 项目类别:
Standard Grant
相似国自然基金
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
sc3S+结构型剪接元件预测算法揭示干性剪接因子ELAVL2调控肝母细胞瘤恶性演进的机制及临床应用研究
- 批准号:82302642
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能和多模态信息预测复杂下肢动脉病变术后不良事件的算法机制研究
- 批准号:82370499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CAREER: Molecular mechanisms, algorithms and software for design and analysis of genome perturbation experiments
职业:用于设计和分析基因组扰动实验的分子机制、算法和软件
- 批准号:
2238831 - 财政年份:2023
- 资助金额:
$ 79.96万 - 项目类别:
Continuing Grant
HEART Camp Connect: Promoting Adherence to Exercise in Adults with Heart Failure with Preserved Ejection Fraction
HEART Camp Connect:促进射血分数保留的心力衰竭成人患者坚持锻炼
- 批准号:
10657083 - 财政年份:2023
- 资助金额:
$ 79.96万 - 项目类别:
Multiple targets for beta adrenergic antagonist mediate wound healing
β 肾上腺素能拮抗剂的多个靶点介导伤口愈合
- 批准号:
10482306 - 财政年份:2023
- 资助金额:
$ 79.96万 - 项目类别:
AI-Powered Uncovering of Mechanisms in Cancer Through Causal Discovery Analysis and Generative Modeling of Heterogeneous Data
人工智能通过因果发现分析和异构数据生成模型揭示癌症机制
- 批准号:
10581180 - 财政年份:2023
- 资助金额:
$ 79.96万 - 项目类别:
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
- 批准号:
10563598 - 财政年份:2023
- 资助金额:
$ 79.96万 - 项目类别: