RTG: Building Communities in the Mathematical Sciences at Rice University

RTG:在莱斯大学建立数学科学社区

基本信息

  • 批准号:
    1745670
  • 负责人:
  • 金额:
    $ 199.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The aim of this Research Training Group project "RTG: Building Communities in the Mathematical Sciences at Rice University" is to continue, enhance, broaden and diversify the core ideas and values that were articulated by its founder Edgar Odell Lovett; namely that it be a, "school of the highest grade looking, in its educational programme, as much to investigation as to instruction." In the context of the Mathematics Department, and more precisely, this Research Training Group project, the Principal Investigators (who have a broad expertise in Geometry and its connections with Analysis and Partial Differential Equations, Geometric Analysis, Geometric Topology, and Algebraic Number Theory) together with other faculty members, postdocs, graduate and undergraduate students intend to focus on building communities which will impact, at all stages of the academic pipeline, the number and readiness of people entering the U.S. mathematical workforce (both academic and industrial), and bolstering in particular the representation of women and underrepresented minorities in the mathematical sciences. Moreover, structures put in place will see a vertical community of women mathematicians, a vertical community of mathematicians from low-income households and underrepresented minority groups, a community of young scholars who will pursue research careers in industry, and a horizontal community of strong junior and senior math majors.The RTG Senior Faculty will use their research expertise and previous experience to mentor research of junior mathematicians centered on Geometry. Reflecting the strongly collaborative relationship of the team, contributions will come from perspectives not only within but also across the disciplines of Analysis and PDE, Geometric Analysis, Geometric Topology, Algebraic Geometry and Algebraic Number Theory. To that end, vertical integration of postdocs and students will allow collaborative research projects, and this will be aided by developing an expository writing seminar in the mathematical sciences for freshmen as an alternative entry point into mathematical thinking, as well as organize conferences of RTG programs to share ideas, the highlights of which will be stored in a public written record. The log-cabin conferences and undergraduate conferences will give participants the opportunity to disseminate their research and grow collaborative networks. There will be opportunities for summer internships in local industries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
研究培训小组项目“RTG:在莱斯大学建立数学科学社区”的目的是延续、增强、拓宽和多样化其创始人埃德加·奥德尔·洛维特(Edgar Odell Lovett)所阐述的核心思想和价值观;也就是说,它是一所“最高等级的学校,在其教育计划中,注重研究和教学”。 在数学系的背景下,更准确地说,在这个研究培训小组项目中,主要研究人员(在几何及其与分析和偏微分方程、几何分析、几何拓扑和代数数论的联系方面拥有广泛的专业知识)与其他教职人员、博士后、研究生和本科生一起,打算重点建设社区,这将在学术管道的各个阶段影响进入美国数学劳动力队伍的人数和准备情况(包括学术和工业),特别是提高妇女和代表性不足的少数群体在数学科学中的代表性。此外,所建立的结构将包括一个由女性数学家组成的垂直社区、一个由来自低收入家庭和代表性不足的少数群体的数学家组成的垂直社区、一个由将在工业界从事研究事业的年轻学者组成的社区以及一个由实力雄厚的青年数学家组成的水平社区。 RTG 高级教师将利用他们的研究专业知识和以往的经验来指导以几何为中心的初级数学家的研究。反映了团队紧密的协作关系,贡献不仅来自分析和偏微分方程、几何分析、几何拓扑、代数几何和代数数论等学科内部的观点,而且还来自跨学科的观点。为此,博士后和学生的垂直整合将允许合作研究项目,这将通过为新生举办数学科学说明性写作研讨会作为数学思维的替代切入点以及组织 RTG 项目会议来帮助实现分享想法,其要点将存储在公共书面记录中。小木屋会议和本科生会议将为参与者提供传播他们的研究成果和发展合作网络的机会。将有机会在当地行业进行暑期实习。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniqueness of solutions of the KdV-hierarchy via Dubrovin-type flows
通过 Dubrovin 型流实现 KdV 层次结构解的唯一性
  • DOI:
    10.1016/j.jfa.2020.108705
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Lukić, Milivoje;Young, Giorgio
  • 通讯作者:
    Young, Giorgio
Symplectic embeddings of four-dimensional polydisks into half integer ellipsoids
四维多圆盘辛嵌入半整数椭球
Characterizing candidates for Cannon's conjecture from geometric measure theory
  • DOI:
    10.1112/blms.12814
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Tamunonye Cheetham-West;Alexander Nolte
  • 通讯作者:
    Tamunonye Cheetham-West;Alexander Nolte
Limit-Periodic Dirac Operators with Thin Spectra
  • DOI:
    10.1016/j.jfa.2022.109711
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    B. Eichinger;J. Fillman;E. Gwaltney;Milivoje Luki'c
  • 通讯作者:
    B. Eichinger;J. Fillman;E. Gwaltney;Milivoje Luki'c
Orthogonal rational functions with real poles, root asymptotics, and GMP matrices
具有实极点、渐进根和 GMP 矩阵的正交有理函数
  • DOI:
    10.1090/btran/117
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eichinger, Benjamin;Lukić, Milivoje;Young, Giorgio
  • 通讯作者:
    Young, Giorgio
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shelly Harvey其他文献

Shelly Harvey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shelly Harvey', 18)}}的其他基金

Knot and Link Concordance
结和链接索引
  • 批准号:
    2109308
  • 财政年份:
    2021
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Standard Grant
2022 Texas Women in Math Symposium
2022 年德克萨斯州女性数学研讨会
  • 批准号:
    2139109
  • 财政年份:
    2021
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Standard Grant
Knot Concordance and Metric Spaces
结索引和度量空间
  • 批准号:
    1613279
  • 财政年份:
    2016
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Standard Grant
Noncommutative and Heegaard Floer Methods in Low-Dimensional Topology
低维拓扑中的非交换和 Heegaard Florer 方法
  • 批准号:
    1309070
  • 财政年份:
    2013
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Continuing Grant
3-Manifolds: Heegaard Splittings, the Curve Complex, and Hyperbolic Geometry
3-流形:Heegaard 分裂、复合曲线和双曲几何
  • 批准号:
    1308209
  • 财政年份:
    2013
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Standard Grant
Knot Theory: 3 and 4-dimensional manifolds
纽结理论:3 维和 4 维流形
  • 批准号:
    1309081
  • 财政年份:
    2013
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Continuing Grant
CAREER: Algebraic Methods in Low-Dimensional Topology
职业:低维拓扑中的代数方法
  • 批准号:
    0748458
  • 财政年份:
    2008
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Continuing Grant
Applications of Noncommutative Algebra to Low-Dimensional Topology and Geometry
非交换代数在低维拓扑和几何中的应用
  • 批准号:
    0539044
  • 财政年份:
    2005
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0202488
  • 财政年份:
    2002
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Standard Grant

相似国自然基金

“医养指数”导向下社区养老居住设施空间模式研究
  • 批准号:
    51908456
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
西南灾害多发地区农村社区避难建筑设计策略研究
  • 批准号:
    51808063
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
社区医养结合设施可拓空间模型与疗愈环境设计研究
  • 批准号:
    51808161
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
社区尺度热环境快速准确预测与区域建筑能耗模拟耦合的仿真方法研究
  • 批准号:
    51608310
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
寒冷地区雾霾天气与城市空间形态的耦合性分析研究 - 以西安城市为例
  • 批准号:
    51608439
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-1: Interface of Change: Building Collaborations to Assess Harvested and Farmed Marine Species Prioritized by Gulf of Alaska Communities Facing Environmental Shifts
RII Track-1:变革界面:建立合作来评估面临环境变化的阿拉斯加湾社区优先考虑的捕捞和养殖海洋物种
  • 批准号:
    2344553
  • 财政年份:
    2024
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Cooperative Agreement
Building Capacity through Professional Learning Communities to Advance Identity Integration in STEM Pre-Service Teacher Preparation
通过专业学习社区进行能力建设,促进 STEM 职前教师准备中的身份整合
  • 批准号:
    2345042
  • 财政年份:
    2024
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Standard Grant
A Social and Solidarity Economy Approach to Building Resilient Communities in Eastern Visayas
在东米沙鄢建设有复原力的社区的社会和团结经济方法
  • 批准号:
    24K05487
  • 财政年份:
    2024
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 199.7万
  • 项目类别:
    Research Grant
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
  • 批准号:
    10672785
  • 财政年份:
    2023
  • 资助金额:
    $ 199.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了