BIGDATA:F: Statistical Learning with Large Dynamic Tensor Data

BIGDATA:F:利用大型动态张量数据进行统计学习

基本信息

  • 批准号:
    1741390
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Time series analysis is mainly applied in the discovery of dependent and dynamic structure of observations over time, and in accurate prediction of potential outcomes of such data in the future. In the big-data era, modern data collection capabilities have led to massive amounts of time series data. Large tensor (or multi-dimensional array) data are now routinely collected in a wide range of applications. For example, a group of countries will report a set of economic indicators each quarter, forming a matrix (2-dimensional array) time series, with each column representing a country and each row representing an economic indicator. The import and export volume of different types of goods for a group of countries over time form a 3-dimensional array time series. The aim of the project is to lay a foundation and develop a general framework to systematically study the dynamics of such tensor systems, decipher the joint behavior of each individual time series in the tensor array, and provide methods for accurate prediction. The framework will include general and specific statistical models, practical applications, statistical methods and their theoretical and empirical properties, computational algorithms and software, and implementation in several data sets. The research can be applied to application areas ranging from finance and economics, environmental sciences, and human behavior (e.g. social networks) to neuroscience and engineering. The project also addresses the training and education of future data scientists. In the big-data era, large tensor time series are routinely observed in a wide range of applications. This project aims to develop state-of-the-art statistical tools to effectively and efficiently extract useful information from such big complex data. The work concerns a general framework of statistical learning with large dynamic tensor data. Specifically, the project will develop a general class of tensor factor models, with modifications for specific applications, for modeling matrix- and tensor-valued time series, dynamic networks, and spatial temporal data. The results are expected to be directly applicable to economic tensor data, import-export volume time series, dynamic social networks, pollution monitoring, problems in fluid dynamics, and dynamic brain connectivity networks. Model estimation procedures, along with their theoretical foundations will be developed. The research will enrich the toolkit of statistical learning for a highly important and widely encountered class of big-data problems. The project also involves research training of graduate and undergraduate students in the field of statistical learning and its applications. The project will develop and disseminate free software, including an array of cleaned data sets for research, and a permanently maintained website as a hub for dissemination of future dynamic tensor research. An international conference on large dynamic tensor analysis will be organized. Evaluation of the computational algorithms and implementation of the methods for large scale applications will leverage cloud computing resources provided through an agreement between commercial cloud service providers and NSF for the BIGDATA solicitation.
时间序列分析主要应用于发现观测值随时间变化的相关动态结构,并准确预测此类数据未来的潜在结果。大数据时代,现代数据采集能力产生了海量的时间序列数据。 现在,大型张量(或多维数组)数据通常在广泛的应用中收集。 例如,一组国家每个季度都会报告一组经济指标,形成一个矩阵(二维数组)时间序列,每一列代表一个国家,每一行代表一个经济指标。一组国家不同类型商品随时间的进出口量形成一个3维数组时间序列。该项目的目的是奠定基础并开发一个通用框架来系统地研究此类张量系统的动力学,破译张量阵列中每个单独时间序列的联合行为,并提供准确预测的方法。该框架将包括一般和具体的统计模型、实际应用、统计方法及其理论和经验特性、计算算法和软件以及在多个数据集中的实现。该研究可应用于从金融和经济、环境科学、人类行为(例如社交网络)到神经科学和工程学等应用领域。 该项目还致力于未来数据科学家的培训和教育。在大数据时代,大张量时间序列在广泛的应用中经常被观察到。该项目旨在开发最先进的统计工具,以有效且高效地从如此大的复杂数据中提取有用的信息。这项工作涉及大型动态张量数据统计学习的通用框架。 具体来说,该项目将开发一类通用的张量因子模型,并针对特定应用进行修改,用于对矩阵和张量值时间序列、动态网络和时空数据进行建模。研究结果预计将直接适用于经济张量数据、进出口量时间序列、动态社交网络、污染监测、流体动力学问题和动态大脑连接网络。将开发模型估计程序及其理论基础。这项研究将丰富统计学习的工具包,以解决一类非常重要且广泛遇到的大数据问题。该项目还涉及统计学习及其应用领域的研究生和本科生的研究培训。该项目将开发和传播免费软件,包括一系列用于研究的清理数据集,以及一个永久维护的网站,作为传播未来动态张量研究的中心。将组织一次大动态张量分析国际会议。 对大规模应用程序的计算算法的评估和方法的实施将利用商业云服务提供商与 NSF 之间就 BIGDATA 征集达成的协议提供的云计算资源。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Nonparametric Bayesian Framework for Short-Term Wind Power Probabilistic Forecast
  • DOI:
    10.1109/tpwrs.2018.2858265
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Wei Xie;Pu Zhang;Rong Chen;Zhi Zhou
  • 通讯作者:
    Wei Xie;Pu Zhang;Rong Chen;Zhi Zhou
KoPA: Automated Kronecker Product Approximation
  • DOI:
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chencheng Cai;Rong Chen;Han Xiao
  • 通讯作者:
    Chencheng Cai;Rong Chen;Han Xiao
Factor models for matrix-valued high-dimensional time series
  • DOI:
    10.1016/j.jeconom.2018.09.013
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Wang, Dong;Liu, Xialu;Chen, Rong
  • 通讯作者:
    Chen, Rong
Extreme eigenvalues of nonlinear correlation matrices with applications to additive models
非线性相关矩阵的极值特征值及其在加性模型中的应用
Second-order Stein: SURE for SURE and other applications in high-dimensional inference
  • DOI:
    10.1214/20-aos2005
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Bellec;Cun-Hui Zhang
  • 通讯作者:
    P. Bellec;Cun-Hui Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rong Chen其他文献

Factor Models for High-Dimensional Dynamic Networks: with Application to International Trade Flow Time Series 1981-2015
高维动态网络的因子模型:应用于 1981-2015 年国际贸易流量时间序列
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elynn Y. Chen;Rong Chen
  • 通讯作者:
    Rong Chen
Human T helper (Th) cell lineage commitment is not directly linked to the secretion of IFN-gamma or IL-4: characterization of Th cells isolated by FACS based on IFN-gamma and IL-4 secretion.
人类 T 辅助 (Th) 细胞谱系定向与 IFN-γ 或 IL-4 的分泌没有直接关系:基于 IFN-γ 和 IL-4 分泌的 FACS 分离的 Th 细胞的表征。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Wuxiong Cao;Yangde Chen;S. Alkan;A. Subramaniam;Fan Long;Hong Liu;Rong Diao;T. Delohery;J. McCormick;Rong Chen;Donghui Ni;P. Wright;Xin Zhang;S. Busch;A. Zilberstein
  • 通讯作者:
    A. Zilberstein
Effects of argon plasma treatment on surface characteristic of photopolymerization PEGDA–HEMA hydrogels
氩等离子体处理对光聚合PEGDA-HEMA水凝胶表面特性的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Tan;Rong Chen;C. Ning;Lin Zhang;Xiongjie Ruan;J. Liao
  • 通讯作者:
    J. Liao
Spatial atomic layer deposition of ZnO/TiO2 nano-laminates
ZnO/TiO2 纳米层压材料的空间原子层沉积
  • DOI:
    10.1116/1.4955289
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rong Chen;Ji-Long Lin;Wen-Jie He;Chen-Long Duan;Qi Peng;Xiao-Lei Wang;Bin Shan
  • 通讯作者:
    Bin Shan
Variability and composition of amino acids and amino sugars in sediment cores of the Changjiang Estuary
长江口沉积物中氨基酸和氨基糖的变异性和组成
  • DOI:
    10.1016/j.orggeochem.2021.104330
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Jin-E Wei;Yan Chen;Ning Zhang;Jun-Qi Yang;Rong Chen;Hong-Hai Zhang;Gui-Peng Yang
  • 通讯作者:
    Gui-Peng Yang

Rong Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rong Chen', 18)}}的其他基金

ADT: i-Group Learning and i-Detect for Dynamic Real Time Anomaly Detection with Applications in Maritime Threat Detection
ADT:用于动态实时异常检测的 i-Group Learning 和 i-Detect 及其在海上威胁检测中的应用
  • 批准号:
    1737857
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
The fifth international workshop on Finance, Insurance, Probability and Statistics
第五届金融、保险、概率与统计国际研讨会
  • 批准号:
    1540863
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Nonlinear dynamic factor models and dynamic factor driven functional time series models
非线性动态因子模型和动态因子驱动的函数时间序列模型
  • 批准号:
    1513409
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research:Modeling and Analysis of Fracture Network for Shale Gas Development and Its Environmental Impact
合作研究:页岩气开发裂缝网络建模与分析及其环境影响
  • 批准号:
    1209085
  • 财政年份:
    2012
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Analysis of Functional Time Series
函数时间序列分析
  • 批准号:
    0905763
  • 财政年份:
    2009
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborartive Research: Monte Carlo Study of Pseudoknotted RNA Molecules: Motifs, Structure and Folding
合作研究:假结 RNA 分子的蒙特卡罗研究:基序、结构和折叠
  • 批准号:
    0800183
  • 财政年份:
    2008
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: Sequential Monte Carlo Methods and Their Applications
合作研究:序贯蒙特卡罗方法及其应用
  • 批准号:
    0073601
  • 财政年份:
    2000
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Monte Carlo Filters for Nonlinear and Non-Gaussian Dynamic Systems
用于非线性和非高斯动态系统的蒙特卡罗滤波器
  • 批准号:
    9982846
  • 财政年份:
    1999
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Nonparametric Modeling and Prediction for Time Series Analysis
时间序列分析的非参数建模和预测
  • 批准号:
    9626113
  • 财政年份:
    1996
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Time Series Analysis
数学科学:非线性时间序列分析
  • 批准号:
    9301193
  • 财政年份:
    1993
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似国自然基金

大数据和机器学习下偏态众数回归模型的统计推断和算法研究
  • 批准号:
    12261051
  • 批准年份:
    2022
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
大数据背景下循证因果迁移学习的统计方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
统计优化与学习天元数学交流项目
  • 批准号:
    12126201
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
断点回归中模型识别、效应估计和大数据统计学习
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
面向地铁客流大数据的统计机器学习关键技术研究
  • 批准号:
    71901188
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BIGDATA: F: Compositional Learning, Maps and Transfer: Statistical and Machine Learning on Collections of Data Sets
BIGDATA:F:组合学习、地图和迁移:数据集集合的统计和机器学习
  • 批准号:
    1837991
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
BIGDATA: F: Statistical Foundation of Predictivity: A Novel Architecture for Big Data Learning
BIGDATA:F:预测性的统计基础:大数据学习的新颖架构
  • 批准号:
    1741191
  • 财政年份:
    2018
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Development of predictive models based on bigdata using statistical machine learning for red tide and fishery in the southern Kyushu
利用统计机器学习开发基于大数据的九州南部赤潮和渔业预测模型
  • 批准号:
    16K07847
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
  • 批准号:
    1664720
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: IA: Statistical Learning for Big Data with Random Projections
BIGDATA:协作研究:F:IA:随机投影大数据的统计学习
  • 批准号:
    1545994
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了