TRIPODS: Berkeley Institute on the Foundations of Data Analysis
TRIPODS:伯克利数据分析基础研究所
基本信息
- 批准号:1740855
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In response to NSF's TRIPODS Phase I initiative, the PIs, with expertise in theoretical and applied statistics, computer science, and mathematics at the University of California, Berkeley, will create a Foundations of Data Analysis (FODA) Institute to address cutting-edge foundational issues in interdisciplinary data science. The Institute will advance foundational research and the application of foundational methods through an intensive program of cross-disciplinary outreach to application domains in and beyond the campus research community. In parallel with the massive technological and methodological advances in the underlying disciplines over the past decade, a thriving array of data-related research and training programs has emerged across campus. Yet none of these programs within the campus data science ecosystem are devoted to addressing the interdisciplinary foundations of data analysis in a focused, mission-driven manner. The FODA Institute will address this crucial unmet need. This interdisciplinary project will lay the groundwork for more productive and fruitful interactions between theoretically-inclined data science researchers and researchers in diverse domains that rely upon, but do not always explicitly appreciate, foundational concepts. Advances in this area will lead to more principled extraction of insights from data across a wide range of domains. The three-year Phase I pilot will pave the way for institutionalization of the project as a larger center that will be the subject of a potential Phase II application.The technical research component of the project addresses four fundamental challenges in data science: the characterization of what is, and what is not, possible in terms of upper and lower bounds for inferential optimization problems; probing more deeply the notion of stability as a computational-inferential principle; exploring the complementary role of randomness as a statistical resource, as an algorithmic resource, and as a tool for data-driven computational mathematics; and developing methods to combine science-based with data-driven models in a principled manner. Each of these challenges addresses old questions in light of new needs, each has important synergies with the other challenges, and each is situated squarely at the interface of theoretical computer science, theoretical statistics, and applied mathematics. The project will bridge the underlying interdisciplinary gaps to address some of the most important questions at the heart of data science today. Funds for the project come from CISE Computing and Communications Foundations and MPS Division of Mathematical Sciences.
为了响应 NSF 的 TRIPODS 第一阶段计划,加州大学伯克利分校拥有理论和应用统计、计算机科学和数学专业知识的 PI 将创建一个数据分析基础 (FODA) 研究所,以解决尖端基础研究问题跨学科数据科学问题。 该研究所将通过针对校园研究界内外应用领域的跨学科推广强化计划,推进基础研究和基础方法的应用。 过去十年来,与基础学科在技术和方法上取得的巨大进步同时,校园内出现了一系列蓬勃发展的数据相关研究和培训项目。 然而,校园数据科学生态系统中的这些项目都没有致力于以有针对性的、任务驱动的方式解决数据分析的跨学科基础。 FODA 研究所将解决这一未满足的重要需求。 这个跨学科项目将为具有理论倾向的数据科学研究人员和不同领域的研究人员之间更富有成效和富有成效的互动奠定基础,这些研究人员依赖但并不总是明确理解基础概念。 该领域的进步将导致从广泛领域的数据中更有原则地提取见解。 为期三年的第一阶段试点将为该项目作为一个更大的中心制度化铺平道路,该中心将成为潜在的第二阶段应用的主题。该项目的技术研究部分解决了数据科学中的四个基本挑战:就推理优化问题的上限和下限而言,什么是可能的,什么是不可能的;更深入地探讨稳定性概念作为计算推理原理;探索随机性作为统计资源、算法资源和数据驱动计算数学工具的补充作用;开发以有原则的方式将基于科学的模型与数据驱动的模型相结合的方法。 这些挑战中的每一个都根据新的需求解决了老问题,每一个都与其他挑战具有重要的协同作用,并且每一个都恰好位于理论计算机科学、理论统计学和应用数学的交汇处。 该项目将弥合潜在的跨学科差距,以解决当今数据科学核心的一些最重要的问题。 该项目的资金来自 CISE 计算和通信基金会以及 MPS 数学科学部。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Mahoney其他文献
Maturation of cerebellar climbing fiber and Purkinje cell population activities during postnatal development
出生后发育过程中小脑攀爬纤维的成熟和浦肯野细胞群活动
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Michael Mahoney;Jean-Marc Good;Taisuke Miyazaki;Kenji F Tanaka;Kenji Sakimura;Masahiko Watanabe;Kazuo Kitamura;Masanobu Kano - 通讯作者:
Masanobu Kano
Fetal gender and maternal serum screening markers
胎儿性别和母体血清筛查标志物
- DOI:
10.1097/01.gim.0000241913.25761.d2 - 发表时间:
2006 - 期刊:
- 影响因子:8.8
- 作者:
J. Santolaya;Michael Mahoney;Mazen Abdallah;J. Duncan;Alberto Delgado;P. Stang;J. Deleon;V. Castracane - 通讯作者:
V. Castracane
Michael Mahoney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Mahoney', 18)}}的其他基金
Collaborative Research: Scalable Linear Algebra and Neural Network Theory
合作研究:可扩展线性代数和神经网络理论
- 批准号:
2134247 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
RI: Medium: Scalable Second-order Methods for Training, Designing, and Deploying Machine Learning Models
RI:中:用于训练、设计和部署机器学习模型的可扩展二阶方法
- 批准号:
2107000 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Basic ALgebra LIbraries for Sustainable Technology with Interdisciplinary Collaboration (BALLISTIC)
协作研究:框架:跨学科协作可持续技术的基本代数库(BALLISTIC)
- 批准号:
2004235 - 财政年份:2020
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
III: Small: Combining Stochastics and Numerics for Improved Scalable Matrix Computations
III:小型:结合随机变量和数值以改进可扩展矩阵计算
- 批准号:
1815054 - 财政年份:2018
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Randomization as a Resource for Rapid Prototyping
FRG:协作研究:随机化作为快速原型制作的资源
- 批准号:
1760316 - 财政年份:2018
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Theory and Practice of Randomized Algorithms for Ultra-Large-Scale Signal Processing
BIGDATA:F:协作研究:超大规模信号处理随机算法的理论与实践
- 批准号:
1838131 - 财政年份:2018
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
BSF: 2014324: Streaming Algorithms for Fundamental Computations in Numerical Linear Algebra
BSF:2014324:数值线性代数中基本计算的流算法
- 批准号:
1540657 - 财政年份:2015
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
III: Small: Characterizing and exploiting tree-like structure in large social and information networks
III:小型:描述和利用大型社交和信息网络中的树状结构
- 批准号:
1423621 - 财政年份:2014
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
- 批准号:
1447534 - 财政年份:2014
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
SGER: Microwave Temperature Profiler (MTP) Support for HIAPER Pole-to-Pole Observations (HIPPO)
SGER:微波温度分析仪 (MTP) 支持 HIAPER 极对极观测 (HIPPO)
- 批准号:
0910920 - 财政年份:2009
- 资助金额:
$ 150万 - 项目类别:
Interagency Agreement
相似海外基金
Berkeley Course on Mining and Modeling of Neuroscience Data
伯克利神经科学数据挖掘和建模课程
- 批准号:
9036886 - 财政年份:2015
- 资助金额:
$ 150万 - 项目类别:
Berkeley Course on Mining and Modeling of Neuroscience Data
伯克利神经科学数据挖掘和建模课程
- 批准号:
9147638 - 财政年份:2015
- 资助金额:
$ 150万 - 项目类别: