CPS: Medium: Collaborative Research: Cyber-Enabled Online Quality Assurance for Scalable Additive Bio-Manufacturing

CPS:媒介:协作研究:可扩展增材生物制造的网络在线质量保证

基本信息

  • 批准号:
    1739696
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Close to one million lives could be saved each year in the United States alone by organ transplantation if a sufficient number of organs were available, potentially preventing 35% of all deaths in the nation. In contrast, due to critical shortages of organs, only about 28,000 organ transplants are performed each year, with a waiting list of 120,000 people. A promising potential solution to this shortage is the high quality and production-scale 3D printing of human organs by bio-additive manufacturing (Bio-AM). However, as articulated in the 2016 NSF workshop on Additive Manufacturing for Healthcare, the current use of Bio-AM is impeded by poor organ quality, resulting in part from inadequate process monitoring and lack of integrated process control strategies. As a result, despite enormous strides, it is still not possible to scale Bio-AM to the stringent quality standards mandated for organ transplants. This research will address the compelling need to incorporate advanced process models into sensor-based process control strategies needed to prevent cell damage, decrease cell placement errors, and improve tissue functioning in Bio-AM. If successful methods for reliable, high-volume, high-quality, and safe Bio-AM can be realized, it will have profound socioeconomic benefits in terms of public health, medical safety, and drug discovery. The project will engage grade 6-12 STEM teachers through the Research Experiences for Teachers (RET) Innovation-based Manufacturing Program by providing opportunities for teachers to engage in cutting edge research in Bio-AM. The goal of the project is to reliably produce viable 3D printed biological constructs (mini-tissues). The central approach is to couple in-situ heterogeneous sensor-based monitoring and real-time closed-loop process control approaches for ensuring the reliable printing of biological constructs. The work involves the following four objectives: (1) using experimentation and modeling to understand the causal effect of process-material interactions on specific Bio-AM defects, (2) employing sensors to detect incipient defects during printing, (3) diagnosing the root causes of detected defects by analyzing sensor data using real-time decision-theoretic models, and (4) preventing propagation of defects through closed-loop process control. The investigation will contribute: (1) fundamental understanding of the causal bio-physical process interactions that govern the quality of printed biological tissue constructs through empirical investigation and sensor-based data analytics, (2) new mathematical models for predicting the layer quality by taking into consideration the complex and dynamic tissue maturation phenomena, (3) real-time and computationally efficient decision-making for accurate classification of defects from sensor data, and (4) a two-stage, real-time, closed-loop quality control approach for preventing propagation of defects by executing smart corrective actions during the printing process.
如果有足够数量的器官可用,则仅在美国,每年就可以通过器官移植来挽救近一百万的生命,这有可能阻止全国所有死亡人数的35%。相比之下,由于器官的严重短缺,每年仅进行约28,000台器官移植,等待清单12万人。 这种短缺的有希望的潜在解决方案是生物添加性制造(Bio-AM)对人体器官的高质量和生产规模的3D打印。但是,正如2016年NSF关于医疗保健添加剂制造的研讨会所阐明的那样,当前的Bio-AM使用受到器官质量的障碍所阻碍,部分原因是过程监测不足和缺乏集成过程控制策略。结果,尽管大步前进,但仍无法将生物AM扩展到为器官移植的严格质量标准。这项研究将解决将高级过程模型纳入基于传感器的过程控制策略,以防止细胞损伤,减少细胞放置误差并改善Bio-AM中组织功能所需的迫切需求。如果可以实现可靠,大量,高质量和安全的生物AM的成功方法,那么它将在公共卫生,医疗安全和药物发现方面具有深远的社会经济益处。 该项目将通过为教师(RET)创新的制造计划的研究经验与6至12年级的STEM教师互动,从而为教师提供了在Bio-AM进行尖端研究的机会。该项目的目的是可靠地生产可行的3D印刷生物结构(迷你生物)。中心方法是将基于原位的异质传感器的监测和实时闭环工艺控制方法进行确保可靠的生物构造印刷。 The work involves the following four objectives: (1) using experimentation and modeling to understand the causal effect of process-material interactions on specific Bio-AM defects, (2) employing sensors to detect incipient defects during printing, (3) diagnosing the root causes of detected defects by analyzing sensor data using real-time decision-theoretic models, and (4) preventing propagation of defects through closed-loop process control. 调查将有助于:(1)对因果生物物理过程相互作用的基本理解,该过程通过基于经验的研究和基于传感器的数据分析来控制印刷生物组织构建的质量,(2)通过考虑复杂和动态组织现象的复杂和动力学效率(3),(3)用于预测层质量的新数学模型(3) (4)一种两阶段的实时闭环质量控制方法,用于通过在打印过程中执行智能纠正措施来防止缺陷传播。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extrusion bioprinting: Recent progress, challenges, and future opportunities
  • DOI:
    10.1016/j.bprint.2020.e00116
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ramesh, Srikanthan;Harrysson, Ola L. A.;Rivero, Iris, V
  • 通讯作者:
    Rivero, Iris, V
Monitoring and control of biological additive manufacturing using machine learning
  • DOI:
    10.1007/s10845-023-02092-6
  • 发表时间:
    2023-03-06
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Gerdes,Samuel;Gaikwad,Aniruddha;Rao,Prahalada
  • 通讯作者:
    Rao,Prahalada
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prahalada Rao其他文献

Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing
深度神经算子支持增材制造数字孪生建模
Effect of processing parameters and thermal history on microstructure evolution and functional properties in laser powder bed fusion of 316L
加工参数和热历史对 316L 激光粉末床熔合微观结构演变和功能性能的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaustubh Deshmukh;A. Riensche;Ben Bevans;Ryan J. Lane;Kyle Snyder;H. Halliday;Christopher B. Williams;Reza Mirzaeifar;Prahalada Rao
  • 通讯作者:
    Prahalada Rao
Stochastic Modeling and Analysis of Spindle Power During Hard Milling With a Focus on Tool Wear
以刀具磨损为重点的硬铣削过程中主轴功率的随机建模和分析

Prahalada Rao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prahalada Rao', 18)}}的其他基金

PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
  • 批准号:
    2322322
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    2309483
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
  • 批准号:
    2044710
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RII Track-4: Understanding the Fundamental Thermal Physics in Metal Additive Manufacturing and its Influence on Part Microstructure and Distortion.
RII Track-4:了解金属增材制造中的基础热物理及其对零件微观结构和变形的影响。
  • 批准号:
    1929172
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    1752069
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
  • 批准号:
    1719388
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
  • 批准号:
    1538059
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
  • 批准号:
    2333980
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了