CPS: Medium: Collaborative Research: Cyber-Enabled Online Quality Assurance for Scalable Additive Bio-Manufacturing
CPS:媒介:协作研究:可扩展增材生物制造的网络在线质量保证
基本信息
- 批准号:1739696
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Close to one million lives could be saved each year in the United States alone by organ transplantation if a sufficient number of organs were available, potentially preventing 35% of all deaths in the nation. In contrast, due to critical shortages of organs, only about 28,000 organ transplants are performed each year, with a waiting list of 120,000 people. A promising potential solution to this shortage is the high quality and production-scale 3D printing of human organs by bio-additive manufacturing (Bio-AM). However, as articulated in the 2016 NSF workshop on Additive Manufacturing for Healthcare, the current use of Bio-AM is impeded by poor organ quality, resulting in part from inadequate process monitoring and lack of integrated process control strategies. As a result, despite enormous strides, it is still not possible to scale Bio-AM to the stringent quality standards mandated for organ transplants. This research will address the compelling need to incorporate advanced process models into sensor-based process control strategies needed to prevent cell damage, decrease cell placement errors, and improve tissue functioning in Bio-AM. If successful methods for reliable, high-volume, high-quality, and safe Bio-AM can be realized, it will have profound socioeconomic benefits in terms of public health, medical safety, and drug discovery. The project will engage grade 6-12 STEM teachers through the Research Experiences for Teachers (RET) Innovation-based Manufacturing Program by providing opportunities for teachers to engage in cutting edge research in Bio-AM. The goal of the project is to reliably produce viable 3D printed biological constructs (mini-tissues). The central approach is to couple in-situ heterogeneous sensor-based monitoring and real-time closed-loop process control approaches for ensuring the reliable printing of biological constructs. The work involves the following four objectives: (1) using experimentation and modeling to understand the causal effect of process-material interactions on specific Bio-AM defects, (2) employing sensors to detect incipient defects during printing, (3) diagnosing the root causes of detected defects by analyzing sensor data using real-time decision-theoretic models, and (4) preventing propagation of defects through closed-loop process control. The investigation will contribute: (1) fundamental understanding of the causal bio-physical process interactions that govern the quality of printed biological tissue constructs through empirical investigation and sensor-based data analytics, (2) new mathematical models for predicting the layer quality by taking into consideration the complex and dynamic tissue maturation phenomena, (3) real-time and computationally efficient decision-making for accurate classification of defects from sensor data, and (4) a two-stage, real-time, closed-loop quality control approach for preventing propagation of defects by executing smart corrective actions during the printing process.
如果有足够数量的器官可用,仅在美国每年就可以通过器官移植挽救近一百万人的生命,从而可能避免全国 35% 的死亡。相比之下,由于器官严重短缺,每年仅进行约2.8万例器官移植,等待人数达12万人。 解决这一短缺问题的一个有希望的潜在解决方案是通过生物增材制造 (Bio-AM) 进行高质量和生产规模的人体器官 3D 打印。然而,正如 2016 年 NSF 医疗保健增材制造研讨会所阐述的那样,目前 Bio-AM 的使用受到器官质量差的阻碍,部分原因是过程监控不足和缺乏集成的过程控制策略。因此,尽管取得了巨大进步,但仍然无法将 Bio-AM 扩展到器官移植所规定的严格质量标准。这项研究将满足将先进过程模型纳入基于传感器的过程控制策略的迫切需求,以防止细胞损伤、减少细胞放置错误并改善 Bio-AM 中的组织功能。如果能够成功实现可靠、大批量、高质量和安全的生物增材制造方法,它将在公共卫生、医疗安全和药物发现方面产生深远的社会经济效益。 该项目将通过教师研究经验 (RET) 创新制造项目吸引 6-12 年级的 STEM 教师参与,为教师提供参与 Bio-AM 前沿研究的机会。该项目的目标是可靠地生产可行的 3D 打印生物结构(微型组织)。核心方法是将基于异质传感器的原位监测和实时闭环过程控制方法结合起来,以确保生物结构的可靠打印。这项工作涉及以下四个目标:(1) 使用实验和建模来了解工艺与材料相互作用对特定 Bio-AM 缺陷的因果影响,(2) 使用传感器检测打印过程中的初期缺陷,(3) 诊断根源通过使用实时决策理论模型分析传感器数据来确定检测到的缺陷的原因,以及(4)通过闭环过程控制防止缺陷传播。 该研究将有助于:(1) 通过实证研究和基于传感器的数据分析,对控制印刷生物组织结构质量的因果生物物理过程相互作用有基本的了解,(2) 通过采用新的数学模型来预测层质量考虑到复杂且动态的组织成熟现象,(3)实时且计算高效的决策,用于根据传感器数据对缺陷进行准确分类,以及(4)两阶段实时闭环质量控制方法通过执行智能纠正来防止缺陷传播打印过程中的动作。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extrusion bioprinting: Recent progress, challenges, and future opportunities
- DOI:10.1016/j.bprint.2020.e00116
- 发表时间:2021-03-01
- 期刊:
- 影响因子:0
- 作者:Ramesh, Srikanthan;Harrysson, Ola L. A.;Rivero, Iris, V
- 通讯作者:Rivero, Iris, V
Monitoring and control of biological additive manufacturing using machine learning
- DOI:10.1007/s10845-023-02092-6
- 发表时间:2023-03-06
- 期刊:
- 影响因子:8.3
- 作者:Gerdes,Samuel;Gaikwad,Aniruddha;Rao,Prahalada
- 通讯作者:Rao,Prahalada
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prahalada Rao其他文献
Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing
深度神经算子支持增材制造数字孪生建模
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ning Liu;Xuxiao Li;M. Rajanna;E. Reutzel;Brady A Sawyer;Prahalada Rao;Jim Lua;Nam Phan;Yue Yu - 通讯作者:
Yue Yu
Effect of processing parameters and thermal history on microstructure evolution and functional properties in laser powder bed fusion of 316L
加工参数和热历史对 316L 激光粉末床熔合微观结构演变和功能性能的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kaustubh Deshmukh;A. Riensche;Ben Bevans;Ryan J. Lane;Kyle Snyder;H. Halliday;Christopher B. Williams;Reza Mirzaeifar;Prahalada Rao - 通讯作者:
Prahalada Rao
Stochastic Modeling and Analysis of Spindle Power During Hard Milling With a Focus on Tool Wear
以刀具磨损为重点的硬铣削过程中主轴功率的随机建模和分析
- DOI:
10.1115/1.4040728 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Xingtao Wang;Robert E. Williams;M. Sealy;Prahalada Rao;Yuebin B. Guo - 通讯作者:
Yuebin B. Guo
Prahalada Rao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prahalada Rao', 18)}}的其他基金
PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
- 批准号:
2322322 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
- 批准号:
2309483 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
- 批准号:
2044710 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RII Track-4: Understanding the Fundamental Thermal Physics in Metal Additive Manufacturing and its Influence on Part Microstructure and Distortion.
RII Track-4:了解金属增材制造中的基础热物理及其对零件微观结构和变形的影响。
- 批准号:
1929172 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
- 批准号:
1752069 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
- 批准号:
1719388 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
- 批准号:
1538059 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
- 批准号:
2414176 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant