SCC-Planning: Agent-based Scenario Planning for a Smart & Connected Community against Sea Level Rise in Tampa Bay

SCC-Planning:基于智能体的场景规划

基本信息

  • 批准号:
    1737598
  • 负责人:
  • 金额:
    $ 9.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Sea-level rise and flooding pose significant risks to communities and infrastructure in Florida and many other coastal states. The work in this proposal seeks to engage a variety of stakeholders in the Tampa Bay region, from citizens to businesses to government agencies, in exercises grounded in Big Data analytics and agent-based modeling that simulates the dynamics and uncertainty of responses to sea level change. The ultimate objective is to create a more connected community by convening these stakeholders and having them work together towards crafting resilient responses to the possible outcomes of sea level rise scenarios. In addition to bringing together scientists, government officials, and business owners, we will also inform the general public, educate K-12 students, outreach to the minority groups about the challenges resulting from sea level rise and coastal flooding due to extreme weather events and natural disasters such as hurricanes and flash floods through a simplified version of the developed software, which is fostered by attractive visual features.The prospective research proposed in this work will provide the much needed foundational science and technology for tackling the potentially disastrous effects of coastal flooding. It will develop novel Big Data analysis techniques and game-theoretic frameworks to deliver an agent based decision-making model which will underlie a scenario planning software for facilitating the community engagement. The proposed decision-making model will integrate fundamental disciplines including oceanic, atmospheric, and marine sciences, civil and environmental engineering, urban planning, and the social sciences into the multi-disciplinary scenario planning framework. The community engagement will be handled from an integrated systems perspective.
海平面上升和洪水对佛罗里达州和许多其他沿海州的社区和基础设施构成了重大风险。 该提案中的工作旨在与坦帕湾地区的各种利益相关者参与,从公民到企业再到政府机构,以大数据分析和基于代理的建模为基础的练习,这些练习模拟了对海平面变化的反应的动态和不确定性。最终目标是通过召集这些利益相关者并让他们共同努力来制定对海平面上升崛起情景可能结果的弹性反应来创建一个更加联系的社区。除了将科学家,政府官员和企业主汇聚在一起之外,我们还将告知公众,对K-12学生进行教育,向少数群体宣讲有关海平面上升和沿海洪水造成的挑战,这是由于飓风和洪水(例如飓风)(如洪水)的范围和洪水泛滥等自然灾害,并通过启动的技术来培养了这项工作。沿海洪水的潜在灾难性影响。它将开发新颖的大数据分析技术和游戏理论框架,以提供基于代理的决策模型,该模型将是一个方案计划软件,以促进社区参与。拟议的决策模型将将包括海洋,大气和海洋科学,民用和环境工程,城市规划以及社会科学在内的基本学科整合到多学科的场景规划框架中。社区参与将从集成系统的角度来处理。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reinforcement Learning for Adaptive Resource Allocation in Fog RAN for IoT With Heterogeneous Latency Requirements
  • DOI:
    10.1109/access.2019.2939735
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    A. Nassar;Yasin Yılmaz
  • 通讯作者:
    A. Nassar;Yasin Yılmaz
Anomaly Detection in Partially Observed Traffic Networks
  • DOI:
    10.1109/tsp.2019.2892026
  • 发表时间:
    2019-03-15
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Hou, Elizabeth;Yilmaz, Yasin;Hero, Alfred O., III
  • 通讯作者:
    Hero, Alfred O., III
Distributed Dynamic State Estimation and LQG Control in Resource-Constrained Networks
Resource Allocation in Fog RAN for Heterogeneous IoT Environments Based on Reinforcement Learning
Real-Time Detection of Hybrid and Stealthy Cyber-Attacks in Smart Grid
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yasin Yilmaz其他文献

EVALUATION OF THE EFFECT OF VACCINATION TECHNIQUE ON BCG VACCINE REACTION
疫苗接种技术对卡介苗疫苗反应影响的评价
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Esra Devecioğlu;Bahar Kural;M. Ören;Yasin Yilmaz;Tijen Eren;G. Gökçay
  • 通讯作者:
    G. Gökçay
DeepQCD: An end-to-end deep learning approach to quickest change detection
  • DOI:
    10.1016/j.jfranklin.2024.107199
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mehmet Necip Kurt;Jiaohao Zheng;Yasin Yilmaz;Xiaodong Wang
  • 通讯作者:
    Xiaodong Wang
Deceptive Skies: Leveraging GANs for Drone Sensor Data Falsification
欺骗性的天空:利用 GAN 进行无人机传感器数据伪造
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mehmed Kerem Uludag;Maryna Veksler;Yasin Yilmaz;Kemal Akkaya
  • 通讯作者:
    Kemal Akkaya
Spor ve Alkol Bağımlılığı
Spor ve Alkol Bağımlılığı
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasin Yilmaz;I. Balcioğlu
  • 通讯作者:
    I. Balcioğlu
THE FREQUENCY OF HLA-A, B AND DRB1 ALLELES IN PATIENTS WITH BETA THALASSEMIA
  • DOI:
    10.1016/j.htct.2021.10.996
  • 发表时间:
    2021-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zeynep Karakas;Yasin Yilmaz;Ayse Erol;Demet Kivanc;Mediha Suleymanoglu;Hayriye Senturk Ciftci;Cigdem Cinar;Serap Karaman;Mustafa Bilici;Aysegul Unuvar;Deniz Tugcu;Gulsah Tanyildiz;Fatma Savran Oguz
  • 通讯作者:
    Fatma Savran Oguz

Yasin Yilmaz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yasin Yilmaz', 18)}}的其他基金

Collaborative Research: Real-Time Data-Driven Anomaly Detection for Complex Networks
协作研究:复杂网络的实时数据驱动异常检测
  • 批准号:
    2040572
  • 财政年份:
    2021
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant

相似国自然基金

基于值等价的交互式动态影响图的求解方法研究与应用
  • 批准号:
    61772442
  • 批准年份:
    2017
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
空间信息网络多平台协同对地观测任务规划方法研究
  • 批准号:
    91538113
  • 批准年份:
    2015
  • 资助金额:
    84.0 万元
  • 项目类别:
    重大研究计划
面向新能源大规模集中并网的电力系统协调规划理论模型及其Multi-Agent模拟分析方法研究
  • 批准号:
    71271082
  • 批准年份:
    2012
  • 资助金额:
    42.0 万元
  • 项目类别:
    面上项目
基于自动谈判的协作与竞争——面向多个自我本位的Agent的智能规划
  • 批准号:
    61105039
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
复杂环境下农田物联网移动信标节点路径规划新机制与算法研究
  • 批准号:
    31101080
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Lentivirus Construct Core
慢病毒构建核心
  • 批准号:
    10630391
  • 财政年份:
    2023
  • 资助金额:
    $ 9.85万
  • 项目类别:
Cancer Therapeutics and Host Response Research Program
癌症治疗和宿主反应研究计划
  • 批准号:
    10625756
  • 财政年份:
    2023
  • 资助金额:
    $ 9.85万
  • 项目类别:
Ex vivo whole ovary culture system for screening gonadotoxicity during drug development
用于在药物开发过程中筛选性腺毒性的离体全卵巢培养系统
  • 批准号:
    10823136
  • 财政年份:
    2023
  • 资助金额:
    $ 9.85万
  • 项目类别:
Surgery vs. conservative care for meniscal tear after unsuccessful PT: an RCT
PT 失败后半月板撕裂的手术与保守治疗:随机对照试验
  • 批准号:
    10579419
  • 财政年份:
    2023
  • 资助金额:
    $ 9.85万
  • 项目类别:
SPORE University of Texas M. D. Anderson Cancer Center-Leukemia
SPORE 德克萨斯大学 MD 安德森癌症中心 - 白血病
  • 批准号:
    10911713
  • 财政年份:
    2023
  • 资助金额:
    $ 9.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了