SaTC: CORE: Small: Collaborative: Exploiting Physical Properties in Wireless Networks for Implicit Authentication

SaTC:核心:小型:协作:利用无线网络中的物理属性进行隐式身份验证

基本信息

  • 批准号:
    1717356
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The rapid development of information technology not only leads to great convenience in our daily lives, but also raises significant concerns in the field of security and privacy. Particularly, the authentication process, which serves as the first line of information security by verifying the identity of a person or device, has become increasingly critical. An unauthorized access could result in detrimental impact on both corporation and individual in both secrecy loss and privacy leakage. Unlike many existing studies on user/device authentication, which either employ specialized or expensive hardware that needs experts for installation and calibration or require users' active involvement, the emerging low-cost and unobtrusive authentication solution without the users' participation is particularly attractive to effectively complement conventional security approaches. Due to the rich wireless connectivity and unique signal characteristics in pervasive wireless environments, this project takes a different view point by exploiting unique physical properties in wireless networks to facilitate implicit authentication for both human and mobile devices. The proposed research could advance our knowledge in exploiting the physical layer information in wireless networks to capture unique physiological and behavioral characteristics from human during their daily activities. It could also enhance our understanding in developing deep learning techniques to authenticate people based on their activities in the physical environments. Additionally, the educational efforts include curriculum development, K-12 and undergraduate involvement, and underrepresented student engagement in research.This project focuses on building a holistic framework that leverages fine-grained radio signals available from the commercial wireless networks to perform implicit user/device authentication. The proposed framework aims to advance the foundation of integrating fine-grained physical properties in wireless networks to enhance wireless security. The research reveals that the fine-grained signal properties in wireless networks are capable to capture unique physiological and behavioral characteristics from human in both stationary and mobile daily activities. The proposed framework develops smart segmentation on the wireless signals and extract unique features that enable the capability of distinguishing individual. It further develops deep learning techniques to authenticate people based on their daily activities in the physical environments. The authentication process does not require active user involvement nor require the user to wear any device. This project also develops efficient techniques to detect the presence of user spoofing and localize attackers to facilitate the employment of a broad array of defending strategies.
信息技术的快速发展不仅给我们的日常生活带来了极大的便利,也引起了安全和隐私领域的重大关注。特别是,通过验证个人或设备的身份作为信息安全第一道防线的身份验证过程变得越来越重要。未经授权的访问可能会对公司和个人造成机密丢失和隐私泄露的不利影响。与许多现有的用户/设备身份验证研究不同,这些研究要么采用专门或昂贵的硬件,需要专家进行安装和校准,要么需要用户的积极参与,新兴的低成本且不引人注目的无需用户参与的身份验证解决方案对于有效地实现身份验证特别有吸引力。补充传统的安全方法。由于无线环境中丰富的无线连接和独特的信号特征,该项目采取了不同的观点,通过利用无线网络中独特的物理属性来促进对人类和移动设备的隐式身份验证。拟议的研究可以提高我们在利用无线网络中的物理层信息来捕获人类在日常活动中独特的生理和行为特征方面的知识。它还可以增强我们对开发深度学习技术的理解,以根据人们在物理环境中的活动对他们进行身份验证。此外,教育工作包括课程开发、K-12 和本科生参与,以及代表性不足的学生参与研究。该项目侧重于构建一个整体框架,利用商业无线网络提供的细粒度无线电信号来执行隐式用户/设备验证。所提出的框架旨在为无线网络中集成细粒度物理属性奠定基础,以增强无线安全性。研究表明,无线网络中的细粒度信号特性能够捕获人类在固定和移动日常活动中独特的生理和行为特征。所提出的框架对无线信号进行智能分割,并提取独特的特征,从而能够区分个体。它进一步开发深度学习技术,根据人们在物理环境中的日常活动对他们进行身份验证。身份验证过程不需要用户主动参与,也不需要用户佩戴任何设备。该项目还开发了有效的技术来检测用户欺骗的存在并定位攻击者,以促进广泛的防御策略的采用。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mobile Device Usage Recommendation based on User Context Inference Using Embedded Sensors
使用嵌入式传感器基于用户上下文推断的移动设备使用推荐
MU-ID: Multi-user Identification Through Gaits Using Millimeter Wave Radios
MU-ID:使用毫米波无线电通过步态进行多用户识别
Environment-independent In-baggage Object Identification Using WiFi Signals
使用 WiFi 信号进行独立于环境的行李内物体识别
WiFi-Enabled Smart Human Dynamics Monitoring
支持 WiFi 的智能人体动态监测
Poster: Video Chat Scam Detection Leveraging Screen Light Reflection
海报:利用屏幕光反射检测视频聊天诈骗
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaonan Guo其他文献

Serum signature of antibodies to toxoplasma gondii, rubella virus, and cytomegalovirus in females with bipolar disorder: A cross-sectional study
女性双相情感障碍中弓形虫、风疹病毒和巨细胞病毒抗体的血清特征:一项横断面研究
  • DOI:
    10.1016/j.jad.2024.06.014
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Xiaonan Guo;Yiqing Chen;Huimin Huang;Yifeng Liu;Lingzhuo Kong;Lizichen Chen;Hailong Lyu;Tongsheng Gao;Jianbo Lai;Dan Zhang;Shaohua Hu
  • 通讯作者:
    Shaohua Hu
Kinetic Theory of Rectangular Soft Electromagnetic Actuators Driven by the Lorentz Force
洛伦兹力驱动的矩形软电磁执行器的动力学理论
  • DOI:
    10.3390/molecules29030692
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Lizichen Chen;Xiaonan Guo
  • 通讯作者:
    Xiaonan Guo
Novel BC02 Compound Adjuvant Enhances Adaptive and Innate Immunity Induced by Recombinant Glycoprotein E of Varicella-Zoster Virus
新型BC02复合佐剂增强水痘带状疱疹病毒重组糖蛋白E诱导的适应性和先天免疫
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Junli Li;Lili Fu;Xiaonan Guo;Yang Yang;Jiaxin Dong;Guozhi Wang;Aihua Zhao
  • 通讯作者:
    Aihua Zhao
Individual-specific functional connectome biomarkers predict schizophrenia positive symptoms during adolescent brain maturation
个体特异性功能连接组生物标志物预测青少年大脑成熟期间的精神分裂症阳性症状
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Yun-Shuang Fan;Liang Li;Yue Peng;Haoru Li;Jing Guo;Meiling Li;Siqi Yang;Meng Yao;Jinping Zhao;Hesheng Liu;Wei Liao;Xiaonan Guo;Shaoqiang Han;Qian Cui;Xujun Duan;Yong Xu;Yan Zhang;Huafu Chen
  • 通讯作者:
    Huafu Chen
N/Ce doped graphene supported Pt nanoparticles for the catalytic oxidation of formaldehyde at room temperature
N/Ce掺杂石墨烯负载Pt纳米粒子用于室温催化氧化甲醛
  • DOI:
    10.1016/j.jes.2021.12.033
  • 发表时间:
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Yaodong Guo;Zhaoying Di;Xiaonan Guo;Ying Wei;Jingbo Jia;Runduo Zhang
  • 通讯作者:
    Runduo Zhang

Xiaonan Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaonan Guo', 18)}}的其他基金

Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2304766
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120371
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
  • 批准号:
    2028894
  • 财政年份:
    2020
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (IEEE DySPAN)
NSF 学生旅费资助 2019 年 IEEE 国际动态频谱接入网络研讨会 (IEEE DySPAN)
  • 批准号:
    1941286
  • 财政年份:
    2019
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Security Assurance in Short Range Communication with Wireless Channel Obfuscation
SaTC:核心:小型:协作:通过无线信道混淆实现短距离通信的安全保证
  • 批准号:
    1815908
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似国自然基金

polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
  • 批准号:
    82301603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
  • 批准号:
    82301521
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
  • 批准号:
    2343387
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了