NRI: FND: COLLAB: Coordinating Human-Robot Teams in Uncertain Environments
NRI:FND:COLLAB:在不确定环境中协调人机团队
基本信息
- 批准号:1734497
- 负责人:
- 金额:$ 37.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The decreasing cost and increasing sophistication of robot hardware is creating new opportunities for teams of robots to be deployed in combination with skilled humans to support and augment labor-intensive and/or dangerous manual work. The vision is for robots to free up time of skilled workers so they can focus on the tasks that they are skilled at (complex problem solving, dextrous manipulation, customer service, etc.) and robots can help with the distracting and frustrating parts of working, such as delivering materials or fetching supplies. This vision is being realized across many sectors of the US economy and abroad, such as in warehouse management, assembly manufacturing, and disaster response. However, progress in this area is being stymied by current methods that are rigid and inflexible, and rely on unrealistic models of human-robot interaction. This project seeks to overcome these problems by proposing new models and methods for teams robots to coordinate with teams humans to complete complex problems. In particular, this project will create and solve realistic models for coordinating teams of humans and robots in uncertain environments. The PIs will investigate innovative approaches to this research area, and will make the following contributions: 1) Enable a transformative re-conceptualization of multi-human multi-robot teamwork the accurately reflects the strengths and limitations of the team, as situated within a temporally dynamic, stochastic environment, 2) develop realistic and general models of human-robot teamwork that consider uncertainty and partial observability, and 3) Contribute innovative and scalable techniques for planning and learning in these models. This research will build off of methods that have been successful in single-robot problems under uncertainty and partially observability: partially observable Markov decision processes (POMDPs). POMDPs model robots and environments, but not humans. However, explicitly including people in these models will be critical in almost all real-world applications. By extending POMDPs to multiple robots interacting with teams of humans, complex and realistic problems with mixed human and robot teams can be represented. The solution methods developed in this project will allow the robots to reason about the uncertainty about the domain and their human teammates, while optimizing their behavior. The methods are broadly applicable to human-robot collaboration domains, but they will be evaluated in an emergency department, an environment with a large amount of uncertainty and many delivery and supply tasks during high-volume times. A team of robots can assist in these tasks. Experiments will take place in simulation and in the UC San Diego Simulation and Training Center with various numbers of humans and robots. The results of this project have the potential to transform the way human-robot coordination is performed.
机器人硬件成本的下降和复杂性的提高为机器人团队与熟练的人类结合部署以支持和增强劳动密集型和/或危险的体力工作创造了新的机会。机器人的愿景是释放熟练工人的时间,使他们能够专注于自己擅长的任务(解决复杂的问题、灵巧的操作、客户服务等),并且机器人可以帮助解决工作中分散注意力和令人沮丧的部分,例如运送材料或获取物资。这一愿景正在美国经济和国外的许多领域实现,例如仓库管理、装配制造和灾难响应。然而,当前的方法僵化、不灵活,并且依赖于不切实际的人机交互模型,阻碍了这一领域的进展。该项目旨在通过提出新的模型和方法来克服这些问题,让团队机器人与团队人类协调完成复杂的问题。特别是,该项目将创建并解决在不确定环境中协调人类和机器人团队的现实模型。 PI 将调查该研究领域的创新方法,并将做出以下贡献: 1) 实现多人多机器人团队合作的变革性重新概念化,准确反映团队在时间范围内的优势和局限性。动态、随机环境,2)开发考虑不确定性和部分可观察性的现实且通用的人机团队合作模型,以及 3)为这些模型中的规划和学习提供创新和可扩展的技术。这项研究将建立在不确定性和部分可观察性的单机器人问题上取得成功的方法的基础上:部分可观察马尔可夫决策过程(POMDP)。 POMDP 模拟机器人和环境,但不模拟人类。然而,在这些模型中明确包含人员对于几乎所有现实世界的应用程序都是至关重要的。 通过将 POMDP 扩展到与人类团队交互的多个机器人,可以表示混合人类和机器人团队的复杂而现实的问题。该项目开发的解决方案方法将使机器人能够推理领域及其人类队友的不确定性,同时优化其行为。这些方法广泛适用于人机协作领域,但它们将在急诊室进行评估,这是一个具有大量不确定性的环境,并且在高容量时期有许多交付和供应任务。一组机器人可以协助完成这些任务。实验将在加州大学圣地亚哥分校模拟和培训中心进行,由不同数量的人和机器人进行模拟。该项目的结果有可能改变人机协调的执行方式。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BADDr: Bayes-Adaptive Deep Dropout RL for POMDPs
- DOI:10.5555/3535850.3535932
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Sammie Katt;Hai V. Nguyen;F. Oliehoek;Chris Amato
- 通讯作者:Sammie Katt;Hai V. Nguyen;F. Oliehoek;Chris Amato
Bayesian Reinforcement Learning in Factored POMDPs
- DOI:
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Sammie Katt;F. Oliehoek;Chris Amato
- 通讯作者:Sammie Katt;F. Oliehoek;Chris Amato
Macro-Action-Based Deep Multi-Agent Reinforcement Learning
- DOI:
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Yuchen Xiao;Joshua Hoffman;Chris Amato
- 通讯作者:Yuchen Xiao;Joshua Hoffman;Chris Amato
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Amato其他文献
(A Partial Survey of) Decentralized, Cooperative Multi-Agent Reinforcement Learning
- DOI:
10.48550/arxiv.2405.06161 - 发表时间:
2024-05 - 期刊:
- 影响因子:0
- 作者:
Christopher Amato - 通讯作者:
Christopher Amato
Christopher Amato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Amato', 18)}}的其他基金
Career: IIS: RI: Improving Multi-Agent Reinforcement Learning for Cooperative, Partially Observable Settings
职业:IIS:RI:改进合作、部分可观察设置的多智能体强化学习
- 批准号:
2044993 - 财政年份:2021
- 资助金额:
$ 37.49万 - 项目类别:
Continuing Grant
NRI: FND: Coordinating and Incorporating Trust in Teams of Humans and Robots with Multi-Robot Reinforcement Learning
NRI:FND:通过多机器人强化学习协调和整合人类和机器人团队的信任
- 批准号:
2024790 - 财政年份:2020
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
Doctoral Mentoring Consortium at the Nineteenth International Conference on Autonomous Agents and Multi-Agent Systems
第十九届自主代理和多代理系统国际会议博士生导师联盟
- 批准号:
2002606 - 财政年份:2020
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
NSF-BSF: RI: Small: Decentralized Active Goal Recognition
NSF-BSF:RI:小型:去中心化主动目标识别
- 批准号:
1816382 - 财政年份:2018
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
CRII: RI: Planning and learning with macro-actions in cooperative multiagent systems
CRII:RI:协作多智能体系统中宏观行动的规划和学习
- 批准号:
1664923 - 财政年份:2016
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
CRII: RI: Planning and learning with macro-actions in cooperative multiagent systems
CRII:RI:协作多智能体系统中宏观行动的规划和学习
- 批准号:
1463945 - 财政年份:2015
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
相似国自然基金
基于Piezo2快速信号传导研究气滞胃痛方干预机械刺激诱导FD胃黏膜内脏高敏状态的作用机制
- 批准号:82305136
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于双展示工程噬菌体fd388-BH-WV应用于三阴性乳腺癌脑转移瘤的靶向“饥饿”治疗
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Piezo蛋白介导SCF/c-kit-JAK-STAT信号通路促进Cajal间质细胞增殖研究腹部推拿调控FD胃动力的作用机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
柴胡疏肝散调节FD肠道菌群—线粒体crosstalk经KEAP1/PGAM5/AIFM1通路抑制ICC氧死亡促进胃动力机制的研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
FD-OCT联合CMR成像技术探索LncRNA NEAT1在动脉粥样硬化进程中的作用与机制
- 批准号:82072030
- 批准年份:2020
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
- 批准号:
2001119 - 财政年份:2020
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
- 批准号:
2001120 - 财政年份:2020
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
- 批准号:
2001216 - 财政年份:2020
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
- 批准号:
1924723 - 财政年份:2019
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: An Open-Source Robotic Leg Platform that Lowers the Barrier for Advanced Prosthetics Research
NRI:FND:COLLAB:降低高级假肢研究障碍的开源机器人腿部平台
- 批准号:
1949346 - 财政年份:2019
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant