RI: Small: Integrating Flexible Normalization Models of Visual Cortex into Deep Neural Networks

RI:小:将视觉皮层的灵活标准化模型集成到深度神经网络中

基本信息

  • 批准号:
    1715475
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Recent advances in artificial intelligence models of deep neural networks have led to tremendous progress in artificial systems that recognize objects in scenes, and in a host of other applications such as speech recognition, and robotics. Although deep neural networks often incorporate computations inspired by the brain, these have typically been applied in a fairly simple and restrictive manner, rather than based on more principled models of neural processing in the brain. Using vision as a paradigmatic example, this project proposes that artificial systems can benefit from integrating approaches that have been developed in biological models of neural processing of scenes. The biological models make use of contextual flexibility, whereby neurons are influenced in a rich way by the image structure that spatially surrounds a given object or feature. This flexibility is expected to improve task performance in deep neural networks, and to impact development of artificial systems that are more compatible with human cognition. The resulting framework, with its deep architecture spanning multiple layers of processing, will, in turn, make predictions about neural processing in the brain, which will impact the neuroscience and cognitive science communities. This project focuses specifically on normalization, a nonlinear computation that is ubiquitous in the brain, and that has been shown to benefit task performance in deep neural networks. The project will develop more principled strategies for determining normalization in deep convolutional neural networks. The main focus will be on learning a form of flexible normalization based on scene statistics models of visual cortex. In this framework, normalization is recruited only to the degree that a visual input is inferred to contain statistical dependencies across space. Performance will be tested for classification and segmentation on large-scale image databases, and will also target tasks more suited to mid-level vision such as figure/ground judgment. This will result in better understanding of normalization nonlinearities in deep convolutional networks, and the implications of flexible normalization for task performance and generalization compared to other forms of normalization. Biologically, normalization is poorly understood beyond primary visual cortex. The models developed will help shed light on the equivalence of this inference for middle cortical areas, and make predictions about what image structure leads to recruitment of normalization. This project will also include launching of an interdisciplinary Deep Learning Discussion Group.
深度神经网络人工智能模型的最新进展导致识别场景中物体的人工系统以及语音识别和机器人等许多其他应用取得了巨大进步。尽管深度神经网络通常包含受大脑启发的计算,但这些计算通常以相当简单和限制性的方式应用,而不是基于大脑中更原则的神经处理模型。该项目以视觉为范例,提出人工系统可以从场景神经处理生物模型中开发的集成方法中受益。生物模型利用上下文灵活性,神经元受到空间上围绕给定对象或特征的图像结构的丰富影响。这种灵活性有望提高深度神经网络的任务性能,并影响与人类认知更兼容的人工系统的开发。由此产生的框架,其深层架构跨越多个处理层,反过来,将对大脑中的神经处理进行预测,这将影响神经科学和认知科学界。该项目特别关注归一化,这是一种在大脑中普遍存在的非线性计算,并且已被证明有利于深度神经网络的任务性能。该项目将开发更有原则的策略来确定深度卷积神经网络的标准化。主要重点是学习一种基于视觉皮层场景统计模型的灵活标准化形式。在这个框架中,归一化仅在视觉输入被推断包含跨空间的统计依赖性的程度上进行。性能将在大规模图像数据库上进行分类和分割测试,还将针对更适合中级视觉的任务,例如图形/地面判断。这将有助于更好地理解深度卷积网络中的归一化非线性,以及与其他形式的归一化相比灵活归一化对任务性能和泛化的影响。从生物学角度来看,除了初级视觉皮层之外,人们对正常化知之甚少。开发的模型将有助于阐明这种推断对于中皮层区域的等价性,并预测哪些图像结构会导致标准化的招募。该项目还将包括启动跨学科深度学习讨论组。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Brain-inspired weighted normalization for CNN image classification
用于 CNN 图像分类的类脑加权归一化
Integrating Flexible Normalization into Midlevel Representations of Deep Convolutional Neural Networks
将灵活的归一化集成到深度卷积神经网络的中层表示中
  • DOI:
    10.1162/neco_a_01226
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Giraldo, Luis Gonzalo;Schwartz, Odelia
  • 通讯作者:
    Schwartz, Odelia
Deep neural networks capture texture sensitivity in V2
深度神经网络捕获 V2 中的纹理敏感度
  • DOI:
    10.1167/jov.20.7.21
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Laskar, Md Nasir;Sanchez Giraldo, Luis Gonzalo;Schwartz, Odelia
  • 通讯作者:
    Schwartz, Odelia
Normalization and pooling in hierarchical models of natural images
自然图像分层模型中的归一化和池化
  • DOI:
    10.1016/j.conb.2019.01.008
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Sanchez;Laskar, Md Nasir;Schwartz, Odelia
  • 通讯作者:
    Schwartz, Odelia
Stimulus- and goal-oriented frameworks for understanding natural vision
用于理解自然视觉的刺激和目标导向框架
  • DOI:
    10.1038/s41593-018-0284-0
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    25
  • 作者:
    Turner MH;Sanchez Giraldo LG;Schwartz O;Rieke F
  • 通讯作者:
    Rieke F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Odelia Schwartz其他文献

Dissecting Query-Key Interaction in Vision Transformers
剖析 Vision Transformer 中的查询键交互
  • DOI:
    10.48550/arxiv.2405.14880
  • 发表时间:
    2024-04-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xu Pan;Aaron Philip;Ziqian Xie;Odelia Schwartz
  • 通讯作者:
    Odelia Schwartz

Odelia Schwartz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
整合深度学习和分子对接的RNA-小分子建模研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小整合膜蛋白SMIM24通过PON2介导的GLUT1质膜转位调控胃癌糖酵解和侵袭转移的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
MFGE8介导整合素αvβ3-STAT3信号轴调控小胶质细胞极化平衡在创伤性脑损伤中的作用及机制研究
  • 批准号:
    82101456
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PNPT1及其小分子抑制剂在非小细胞肺癌整合应激反应中的功能和应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

RI: Small: Integrating physics, data, and art-based insights for controllable generative models
RI:小型:集成物理、数据和基于艺术的见解以实现可控生成模型
  • 批准号:
    2323086
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RI: Small: A New Approach to Integrating Graphical Models in Decision-Theoretic Planning
RI:小型:在决策理论规划中集成图形模型的新方法
  • 批准号:
    1718384
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RI: Small: Integrating Learning and Search for Structured Prediction
RI:小型:集成学习和搜索以进行结构化预测
  • 批准号:
    1219258
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RI: Small: Integrating Paradigms for Approximate Stochastic Planning
RI:小型:集成近似随机规划的范式
  • 批准号:
    1016465
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RI: Small: Integrating Logic Based Declarative Programming Paradigms
RI:小型:集成基于逻辑的声明式编程范式
  • 批准号:
    1018031
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了