AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice

AiTF:协作研究:活跃物质的分布式随机算法:理论与实践

基本信息

  • 批准号:
    1733680
  • 负责人:
  • 金额:
    $ 20.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Swarm robotics explores how groups of robots can work towards a singular goal, which is typically achieved by equipping each robot with sensory capabilities, basic computing power, and movement. The sensors detect and use information about the environment to decide on the next action. Swarm robotics has made many advances in recent years, but is still in its infancy. This project proposes to explore swarm robotics systems in a non-standard way as physical systems. The PIs take a "task-oriented" approach to develop the distributed algorithmic rules that the robots will run (at the microscopic level) in order to converge to the desired collective behavior (at the macroscopic level). This will provide understanding of the minimal requirements for individuals to accomplish the desired behavior, for both algorithmic and physical realizations, and will provide a more principled approach for studying swarm robotics. The robots envisioned are small in scale, ranging in size from millimeters to centimeters, so that when deployed in dense environments, they will behave as programmable active matter.The PIs have strong records for interdisciplinary research, including initiating interdisciplinary areas (e.g., robo-physics, self-organizing particle systems, and the fusion of statistical physics and randomized algorithms). They have a strong commitment toward supporting minorities, women, and undergrad research (e.g., through NSF REUs, including through this project, NSF S-STEM programs at ASU; ADVANCE and S.U.R.E. programs at Georgia Tech). Any breakthrough in this combination of swarm and active matter systems will require employing analyses and techniques from stochastic systems, condensed matter physics, swarm systems, robotics, and distributed algorithms to understand and achieve the desired group dynamics, and hence will bring together and educate researchers from different disciplines and specialties. New research approaches and findings will be incorporated into multiple graduate courses and workshops will provide tutorials for bridging multiple disciplines, making material accessible to young researchers and helping to widely disseminate results. Findings (including open source code) will be published in the various disciplines, and will be be made available on our web pages and ArXiv. The project explores the fundamentals of swarm robotics from a physics standpoint, by viewing the ensemble as active matter composed of programmable elements at the micro-level. The project will follow a (macro-)task oriented approach, and design a distributed stochastic algorithmic framework to design and evaluate algorithms at the micro-level that will yield the targeted emergent macroscopic behavior. The emergent behaviors it addresses include compression (maintaining coherence of a connected community while minimizing perimeter), bridging (connecting two or more locations in the most efficient manner), alignment (determining an agreed upon direction of orientation), jamming (obstruction of movement by increased collective flow), and locomotion (collectively moving while maintaining cohesiveness). Many of these have interesting converse problems which are also equally worthwhile, such as exploration (maintaining a connected population, but exploring maximal area) and non-alignment (representing a disordered ensemble). In some cases the collective behavior acts like a physical system changing between a liquid (disordered) and a solid (ordered) state, as determined by phase transitions in the systems. The project will explore stochastic and distributed algorithms for rigorously achieving these goals.
群体机器人技术探索机器人群体如何实现单一目标,这通常是通过为每个机器人配备感知能力、基本计算能力和运动来实现的。传感器检测并使用有关环境的信息来决定下一步行动。近年来,群体机器人技术取得了许多进步,但仍处于起步阶段。该项目建议以非标准方式探索群体机器人系统作为物理系统。 PI 采用“面向任务”的方法来开发机器人将运行的分布式算法规则(在微观层面),以便收敛到所需的集体行为(在宏观层面)。 这将有助于理解个体在算法和物理实现方面完成所需行为的最低要求,并将为研究群体机器人技术提供更有原则性的方法。设想的机器人规模较小,尺寸从毫米到厘米不等,因此当部署在密集环境中时,它们将表现得像可编程活性物质。 PI 在跨学科研究方面拥有良好的记录,包括启动跨学科领域(例如,机器人物理、自组织粒子系统以及统计物理和随机算法的融合)。他们坚定地致力于支持少数族裔、女性和本科生研究(例如,通过 NSF REU,包括通过该项目、亚利桑那州立大学的 NSF S-STEM 项目;佐治亚理工学院的 ADVANCE 和 S.U.R.E 项目)。 群体和活性物质系统结合的任何突破都需要采用随机系统、凝聚态物理、群体系统、机器人和分布式算法的分析和技术来理解和实现所需的群体动力学,因此将聚集和教育研究人员来自不同学科和专业。 新的研究方法和发现将被纳入多个研究生课程,研讨会将提供跨学科的教程,使年轻研究人员能够获取材料并帮助广泛传播结果。研究结果(包括开源代码)将在各个学科中发布,并将在我们的网页和 ArXiv 上提供。 该项目从物理学的角度探索群体机器人的基础知识,将群体视为由微观层面的可编程元素组成的活性物质。 该项目将遵循面向(宏观)任务的方法,并设计一个分布式随机算法框架来设计和评估微观层面的算法,从而产生目标的紧急宏观行为。 它解决的紧急行为包括压缩(保持连接社区的连贯性,同时最小化周界)、桥接(以最有效的方式连接两个或多个位置)、对齐(确定商定的方向)、干扰(通过增加集体流动)和运动(集体移动,同时保持凝聚力)。其中许多都有有趣的相反问题,这些问题也同样值得,例如探索(维持连接的群体,但探索最大区域)和不对齐(代表无序的整体)。在某些情况下,集体行为就像一个在液态(无序)和固态(有序)状态之间变化的物理系统,由系统中的相变决定。该项目将探索随机和分布式算法来严格实现这些目标。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Stochastic Approach to Shortcut Bridging in Programmable Matter
可编程物质中捷径桥接的随机方法
  • DOI:
    10.1007/978-3-319-66799-7_9
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andres Arroyo, Marta;Cannon, Sarah;Daymude, Joshua J;Randall, Dana;Richa, Andrea W
  • 通讯作者:
    Richa, Andrea W
Bio-Inspired Energy Distribution for Programmable Matter
Improved Leader Election for Self-organizing Programmable Matter
On the runtime of universal coating for programmable matter
  • DOI:
    10.1007/s11047-017-9658-6
  • 发表时间:
    2018-03-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Daymude, Joshua J.;Derakhshandeh, Zahra;Strothmann, Thim
  • 通讯作者:
    Strothmann, Thim
Brief Announcement: A Local Stochastic Algorithm for Separation in Heterogeneous Self-Organizing Particle Systems
简短公告:一种用于异质自组织粒子系统分离的局部随机算法
  • DOI:
    10.1145/3212734.3212792
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cannon, Sarah;Daymude, Joshua J;Gokmen, Cem;Randall, Dana;Richa, Andrea W
  • 通讯作者:
    Richa, Andrea W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Richa其他文献

Andrea Richa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Richa', 18)}}的其他基金

Collaborative Research: AF: Medium: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Self-Organizing Particle Systems
合作研究:AF:中:计算机科学、统计物理和自组织粒子系统问题的马尔可夫链算法
  • 批准号:
    2106917
  • 财政年份:
    2021
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
AitF: Collaborative Research: A Distributed and Stochastic Algorithmic Framework for Active Matter
AitF:协作研究:活性物质的分布式随机算法框架
  • 批准号:
    1637393
  • 财政年份:
    2016
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
AF: Small: Self-Organizing Particle Systems
AF:小型:自组织粒子系统
  • 批准号:
    1422603
  • 财政年份:
    2014
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
EAGER: Self-organizing particle systems: Models and algorithms
EAGER:自组织粒子系统:模型和算法
  • 批准号:
    1353089
  • 财政年份:
    2013
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
Student Travel Support for the Symposium on Stabilization, Safety and Security (SSS 2012)
稳定、安全和保障研讨会的学生旅行支持(SSS 2012)
  • 批准号:
    1254216
  • 财政年份:
    2012
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
AF: Small: Adversarial Models for Wireless Communication
AF:小:无线通信的对抗模型
  • 批准号:
    1116368
  • 财政年份:
    2011
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
Theory of Self-Stabilizing Overlay Networks
自稳定覆盖网络理论
  • 批准号:
    0830704
  • 财政年份:
    2008
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
Dynamic Routing, Distributed Hash Tables and Location Services
动态路由、分布式哈希表和位置服务
  • 批准号:
    0830791
  • 财政年份:
    2008
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
DIALM-POMC Joint Workshop on Foundations of Computing
DIALM-POMC 计算基础联合研讨会
  • 批准号:
    0338509
  • 财政年份:
    2003
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
CAREER: Accessing Shared Objects and Routing in Distributed Environments
职业:在分布式环境中访问共享对象和路由
  • 批准号:
    9985284
  • 财政年份:
    2000
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1940759
  • 财政年份:
    2019
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    2006206
  • 财政年份:
    2019
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733812
  • 财政年份:
    2018
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1854742
  • 财政年份:
    2018
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了